File size: 20,921 Bytes
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e98db3
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
916ff8e
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea32fa8
8388345
ea32fa8
 
 
 
 
 
 
8388345
 
 
 
 
 
 
 
 
 
ea32fa8
 
 
 
 
 
 
 
 
 
8388345
 
 
 
 
a8ad6e1
8388345
 
 
 
 
a8ad6e1
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed67b34
8388345
 
 
 
ea32fa8
8388345
9e98db3
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
ed67b34
8388345
 
 
 
ea32fa8
8388345
9e98db3
8388345
 
 
 
 
 
 
 
916ff8e
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed67b34
8388345
ee028d2
 
8388345
ee028d2
8388345
 
 
 
 
 
 
 
 
 
ea32fa8
9e98db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e98db3
8388345
9e98db3
 
 
 
916ff8e
 
 
9e98db3
8388345
 
 
 
 
ee028d2
 
916ff8e
 
 
ee028d2
ed67b34
ee028d2
 
916ff8e
 
 
ee028d2
8388345
 
 
916ff8e
 
 
 
 
 
 
 
 
 
 
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed67b34
 
 
 
 
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea32fa8
 
8388345
 
 
 
 
 
 
9e98db3
 
 
 
 
8388345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed67b34
8388345
 
 
 
 
 
9e98db3
8388345
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "pillow",
#     "vllm",
#     "tqdm",
#     "toolz",
#     "torch",
#     "pyyaml",  # For parsing YAML front matter
# ]
#
# ///

"""
Convert document images to markdown using olmOCR-2 with vLLM.

This script processes images through the olmOCR-2-7B model to extract
text and structure as markdown, optimized for document understanding.

Features:
- LaTeX equation recognition
- HTML table extraction
- Document structure preservation (headers, lists, formatting)
- Rotation detection and correction metadata
- Figure and chart descriptions
- Natural reading order inference
- High-quality OCR for various document types

Model: allenai/olmOCR-2-7B-1025-FP8
Based on: Qwen2.5-VL-7B-Instruct fine-tuned on olmOCR-mix
"""

import argparse
import base64
import io
import json
import logging
import os
import re
import sys
from datetime import datetime
from typing import Any, Dict, List, Union

import torch
import yaml
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# olmOCR no-anchoring prompt (from olmocr/prompts/prompts.py:build_no_anchoring_v4_yaml_prompt)
OLMOCR_PROMPT = (
    "Attached is one page of a document that you must process. "
    "Just return the plain text representation of this document as if you were reading it naturally. "
    "Convert equations to LateX and tables to HTML.\n"
    "If there are any figures or charts, label them with the following markdown syntax "
    "![Alt text describing the contents of the figure](page_startx_starty_width_height.png)\n"
    "Return your output as markdown, with a front matter section on top specifying values for the "
    "primary_language, is_rotation_valid, rotation_correction, is_table, and is_diagram parameters."
)


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def parse_yaml_frontmatter(text: str) -> tuple[dict, str]:
    """
    Parse YAML front matter from olmOCR output.

    Expected format:
    ---
    primary_language: en
    is_rotation_valid: true
    rotation_correction: 0
    is_table: false
    is_diagram: false
    ---
    # Document content here...

    Returns:
        (metadata_dict, content_without_frontmatter)
    """
    # Match YAML front matter between --- markers
    pattern = r"^---\s*\n(.*?)\n---\s*\n(.*)$"
    match = re.match(pattern, text.strip(), re.DOTALL)

    if match:
        yaml_str = match.group(1)
        content = match.group(2)
        try:
            metadata = yaml.safe_load(yaml_str)
            return metadata or {}, content
        except yaml.YAMLError as e:
            logger.warning(f"Failed to parse YAML front matter: {e}")
            return {}, text
    else:
        # No front matter found, return empty metadata
        logger.warning("No YAML front matter found in output")
        return {}, text


def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    prompt: str = OLMOCR_PROMPT,
    target_longest_dim: int = 1288,
) -> List[Dict]:
    """Create chat message for olmOCR processing.

    Args:
        image: Input image (PIL Image, dict with bytes, or path)
        prompt: OCR prompt text
        target_longest_dim: Target size for longest image dimension (default 1288, matching olmOCR)
    """
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")

    # Resize image to target dimension (matching olmOCR pipeline default of 1288px)
    width, height = pil_img.size
    longest_side = max(width, height)
    if longest_side != target_longest_dim:
        scale = target_longest_dim / longest_side
        new_width = int(width * scale)
        new_height = int(height * scale)
        pil_img = pil_img.resize((new_width, new_height), Image.Resampling.LANCZOS)
        logger.debug(f"Resized image from {width}x{height} to {new_width}x{new_height}")

    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"

    # Return message in vLLM format (text before image, matching olmOCR pipeline)
    return [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": prompt},
                {"type": "image_url", "image_url": {"url": data_uri}},
            ],
        }
    ]


def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]

    return f"""---
tags:
- ocr
- document-processing
- olmocr
- markdown
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using olmOCR-2-7B.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}

## Model Information

olmOCR-2-7B is a high-quality document OCR model based on Qwen2.5-VL-7B-Instruct, fine-tuned on olmOCR-mix-1025 dataset and optimized with GRPO reinforcement learning.

Key features:
- πŸ“ **LaTeX equations** - Mathematical formulas in LaTeX format
- πŸ“Š **HTML tables** - Structured table extraction
- πŸ“ **Document structure** - Headers, lists, formatting preserved
- πŸ–ΌοΈ **Figure descriptions** - Charts and figures labeled with descriptions
- πŸ”„ **Rotation detection** - Metadata about document orientation
- πŸ“‘ **Natural reading order** - Handles multi-column and complex layouts
- 🎯 **High accuracy** - Scores 82.4 ± 1.1 on olmOCR-Bench

## Output Format

Each row contains:
- Original image from source dataset
- `markdown`: Extracted document content in markdown format
- `olmocr_metadata`: JSON with document metadata (language, rotation, table/diagram flags)

## Columns

- `{image_column}`: Original document image
- `markdown`: Extracted text and structure in markdown
- `olmocr_metadata`: Document metadata (primary_language, is_rotation_valid, rotation_correction, is_table, is_diagram)
- `inference_info`: Processing metadata (model, script version, timestamp)

## Reproduction

```bash
# Using HF Jobs (recommended)
hf jobs uv run --flavor l4x1 \\
  -s HF_TOKEN \\
  https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\
  {source_dataset} \\
  your-username/output-dataset

# Local with GPU
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\
  {source_dataset} \\
  your-username/output-dataset
```

## Citation

```bibtex
@misc{{olmocr,
      title={{{{olmOCR: Unlocking Trillions of Tokens in PDFs with Vision Language Models}}}},
      author={{Jake Poznanski and Jon Borchardt and Jason Dunkelberger and Regan Huff and Daniel Lin and Aman Rangapur and Christopher Wilhelm and Kyle Lo and Luca Soldaini}},
      year={{2025}},
      eprint={{2502.18443}},
      archivePrefix={{arXiv}},
      primaryClass={{cs.CL}},
      url={{https://arxiv.org/abs/2502.18443}},
}}
```

---
*Generated with [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr)*
"""


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    output_column: str = "markdown",
    batch_size: int = 16,
    model: str = "allenai/olmOCR-2-7B-1025-FP8",
    max_model_len: int = 16384,
    max_tokens: int = 8192,
    temperature: float = 0.1,
    gpu_memory_utilization: float = 0.8,
    guided_decoding: bool = False,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
):
    """
    Process a dataset of document images through olmOCR-2 to extract markdown.

    Args:
        input_dataset: HuggingFace dataset ID containing images
        output_dataset: HuggingFace dataset ID for output
        image_column: Column name containing images
        output_column: Column name for markdown output
        batch_size: Number of images to process at once
        model: HuggingFace model ID for olmOCR
        max_model_len: Maximum context length
        max_tokens: Maximum tokens to generate per image
        temperature: Sampling temperature (0.1 default, matches olmOCR)
        gpu_memory_utilization: Fraction of GPU memory to use
        guided_decoding: Enable guided decoding with regex for YAML front matter
        hf_token: HuggingFace token for authentication
        split: Dataset split to process
        max_samples: Limit number of samples (for testing)
        private: Make output dataset private
        shuffle: Shuffle dataset before processing
        seed: Random seed for shuffling
    """
    import time

    start_time = time.time()

    # Check CUDA availability
    check_cuda_availability()

    # Login to HuggingFace if token provided
    if hf_token:
        login(token=hf_token)
    elif "HF_TOKEN" in os.environ:
        login(token=os.environ["HF_TOKEN"])

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    ds = load_dataset(input_dataset, split=split)

    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        ds = ds.shuffle(seed=seed)

    # Limit samples if requested
    if max_samples:
        logger.info(f"Limiting to {max_samples} samples")
        ds = ds.select(range(min(max_samples, len(ds))))

    logger.info(f"Processing {len(ds)} samples")
    logger.info(f"Output will be written to column: {output_column}")

    # Set column names - namespace metadata by output column to avoid conflicts
    metadata_column_name = f"{output_column}_metadata"
    inference_info_column = "inference_info"
    logger.info(f"Metadata will be written to column: {metadata_column_name}")

    # Initialize LLM
    logger.info(f"Initializing vLLM with model: {model}")
    llm = LLM(
        model=model,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        limit_mm_per_prompt={"image": 1},
    )

    # Sampling parameters - olmOCR uses temperature 0.1 (transformers example)
    sampling_params_kwargs = {
        "temperature": temperature,
        "max_tokens": max_tokens,
        "repetition_penalty": 1.05,  # Discourage repetitive output
        "stop": ["<|im_end|>", "<|endoftext|>"],
    }

    # Add guided decoding if requested (enforces YAML front matter structure)
    if guided_decoding:
        logger.info("Enabling guided decoding with YAML front matter regex")
        guided_params = GuidedDecodingParams(
            regex=r"---\nprimary_language: (?:[a-z]{2}|null)\nis_rotation_valid: (?:True|False|true|false)\nrotation_correction: (?:0|90|180|270)\nis_table: (?:True|False|true|false)\nis_diagram: (?:True|False|true|false)\n(?:---|---\n[\s\S]+)"
        )
        sampling_params_kwargs["guided_decoding"] = guided_params

    sampling_params = SamplingParams(**sampling_params_kwargs)

    # Process in batches
    all_outputs = []
    all_metadata = []

    for batch in tqdm(
        list(partition_all(batch_size, ds)),
        desc="Processing batches",
    ):
        # Create messages for batch
        messages = [make_ocr_message(item[image_column]) for item in batch]

        # Run inference
        outputs = llm.chat(messages, sampling_params=sampling_params)

        # Extract text and parse YAML front matter
        for idx, output in enumerate(outputs):
            response_text = output.outputs[0].text
            finish_reason = output.outputs[0].finish_reason

            # Log warning if generation didn't finish naturally
            if finish_reason != "stop":
                logger.warning(
                    f"Generation did not finish naturally (reason: {finish_reason}), output may be incomplete"
                )

            metadata, content = parse_yaml_frontmatter(response_text)
            all_outputs.append(content)
            all_metadata.append(json.dumps(metadata))

    # Add results to dataset
    # Check if columns already exist and handle appropriately
    if output_column in ds.column_names:
        logger.warning(
            f"Column '{output_column}' already exists, it will be overwritten"
        )
        ds = ds.remove_columns([output_column])
    ds = ds.add_column(output_column, all_outputs)

    if metadata_column_name in ds.column_names:
        logger.warning(
            f"Column '{metadata_column_name}' already exists, it will be overwritten"
        )
        ds = ds.remove_columns([metadata_column_name])
    ds = ds.add_column(metadata_column_name, all_metadata)

    # Add inference information
    inference_info = json.dumps(
        {
            "model": model,
            "script": "olmocr2-vllm.py",
            "version": "1.0.0",
            "timestamp": datetime.now().isoformat(),
            "batch_size": batch_size,
            "max_tokens": max_tokens,
            "temperature": temperature,
        }
    )

    # Handle existing inference_info column
    if inference_info_column in ds.column_names:
        # Parse existing, append new model info
        def update_inference_info(example):
            try:
                existing = json.loads(example[inference_info_column])
                if not isinstance(existing, list):
                    existing = [existing]
            except (json.JSONDecodeError, KeyError):
                existing = []

            existing.append(json.loads(inference_info))
            return {inference_info_column: json.dumps(existing)}

        ds = ds.map(update_inference_info)
    else:
        ds = ds.add_column(inference_info_column, [inference_info] * len(ds))

    # Calculate processing time
    elapsed_time = time.time() - start_time
    hours = int(elapsed_time // 3600)
    minutes = int((elapsed_time % 3600) // 60)
    seconds = int(elapsed_time % 60)
    processing_time = f"{hours}h {minutes}m {seconds}s"

    # Create and save dataset card
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(ds),
        processing_time=processing_time,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        image_column=image_column,
        split=split,
    )

    # Push to hub
    logger.info(f"Pushing to HuggingFace Hub: {output_dataset}")
    ds.push_to_hub(
        output_dataset,
        private=private,
    )

    # Update dataset card
    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset)

    logger.info(f"βœ“ Processing complete!")
    logger.info(f"βœ“ Dataset: https://huggingface.co/datasets/{output_dataset}")
    logger.info(f"βœ“ Processing time: {processing_time}")
    logger.info(f"βœ“ Samples processed: {len(ds):,}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Convert document images to markdown using olmOCR-2",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:

1. Basic OCR on a dataset:
   uv run olmocr2-vllm.py input-dataset output-dataset

2. Test with first 10 samples:
   uv run olmocr2-vllm.py input-dataset output-dataset --max-samples 10

3. Process with custom batch size:
   uv run olmocr2-vllm.py input-dataset output-dataset --batch-size 8

4. Custom image column:
   uv run olmocr2-vllm.py input-dataset output-dataset --image-column page_image

5. Private output dataset:
   uv run olmocr2-vllm.py input-dataset output-dataset --private

6. Random sampling:
   uv run olmocr2-vllm.py input-dataset output-dataset --max-samples 100 --shuffle

7. Running on HuggingFace Jobs:
   hf jobs uv run --flavor l4x1 \\
     -s HF_TOKEN \\
     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\
     input-dataset output-dataset

8. Real example with historical documents:
   hf jobs uv run --flavor l4x1 \\
     -s HF_TOKEN \\
     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \\
     NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset \\
     your-username/handbooks-olmocr \\
     --max-samples 100 \\
     --shuffle
        """,
    )

    parser.add_argument("input_dataset", help="Input HuggingFace dataset ID")
    parser.add_argument("output_dataset", help="Output HuggingFace dataset ID")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column name containing images (default: image)",
    )
    parser.add_argument(
        "--output-column",
        default="markdown",
        help="Column name for markdown output (default: markdown)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=16,
        help="Batch size for processing (default: 16)",
    )
    parser.add_argument(
        "--model",
        default="allenai/olmOCR-2-7B-1025-FP8",
        help="Model to use (default: allenai/olmOCR-2-7B-1025-FP8)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=16384,
        help="Maximum model context length (default: 16384)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=8192,
        help="Maximum tokens to generate (default: 8192)",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.1,
        help="Sampling temperature (default: 0.1, matches olmOCR transformers example)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument(
        "--guided-decoding",
        action="store_true",
        help="Enable guided decoding with regex for YAML front matter structure",
    )
    parser.add_argument(
        "--hf-token",
        help="HuggingFace token (or set HF_TOKEN env var)",
    )
    parser.add_argument(
        "--split",
        default="train",
        help="Dataset split to process (default: train)",
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private",
        action="store_true",
        help="Make output dataset private",
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="Shuffle dataset before processing",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )

    args = parser.parse_args()
    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        output_column=args.output_column,
        batch_size=args.batch_size,
        model=args.model,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        temperature=args.temperature,
        gpu_memory_utilization=args.gpu_memory_utilization,
        guided_decoding=args.guided_decoding,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
    )