|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Extract structured documents using SmolDocling-256M with vLLM. | 
					
						
						|  |  | 
					
						
						|  | This script processes images through the SmolDocling model to extract | 
					
						
						|  | structured document content with DocTags format, ideal for documents | 
					
						
						|  | with code, formulas, tables, and complex layouts. | 
					
						
						|  |  | 
					
						
						|  | Features: | 
					
						
						|  | - Ultra-compact 256M parameter model | 
					
						
						|  | - DocTags format for efficient representation | 
					
						
						|  | - Code block recognition with indentation | 
					
						
						|  | - Mathematical formula detection | 
					
						
						|  | - Table and chart extraction | 
					
						
						|  | - Layout preservation with bounding boxes | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import argparse | 
					
						
						|  | import base64 | 
					
						
						|  | import io | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import sys | 
					
						
						|  | from typing import Any, Dict, List, Union | 
					
						
						|  | from datetime import datetime | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | from docling_core.types.doc import DoclingDocument | 
					
						
						|  | from docling_core.types.doc.document import DocTagsDocument | 
					
						
						|  | from huggingface_hub import DatasetCard, login | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from toolz import partition_all | 
					
						
						|  | from tqdm.auto import tqdm | 
					
						
						|  | from vllm import LLM, SamplingParams | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig(level=logging.INFO) | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_cuda_availability(): | 
					
						
						|  | """Check if CUDA is available and exit if not.""" | 
					
						
						|  | if not torch.cuda.is_available(): | 
					
						
						|  | logger.error("CUDA is not available. This script requires a GPU.") | 
					
						
						|  | logger.error("Please run on a machine with a CUDA-capable GPU.") | 
					
						
						|  | sys.exit(1) | 
					
						
						|  | else: | 
					
						
						|  | logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_llm_input( | 
					
						
						|  | image: Union[Image.Image, Dict[str, Any], str], | 
					
						
						|  | prompt_text: str = "Convert page to Docling.", | 
					
						
						|  | ) -> Dict: | 
					
						
						|  | """Prepare input for vLLM processing.""" | 
					
						
						|  |  | 
					
						
						|  | if isinstance(image, Image.Image): | 
					
						
						|  | pil_img = image.convert("RGB") | 
					
						
						|  | elif isinstance(image, dict) and "bytes" in image: | 
					
						
						|  | pil_img = Image.open(io.BytesIO(image["bytes"])).convert("RGB") | 
					
						
						|  | elif isinstance(image, str): | 
					
						
						|  | pil_img = Image.open(image).convert("RGB") | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unsupported image type: {type(image)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | chat_template = ( | 
					
						
						|  | f"<|im_start|>User:<image>{prompt_text}<end_of_utterance>\nAssistant:" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return {"prompt": chat_template, "multi_modal_data": {"image": pil_img}} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_doctags_to_markdown(doctags_output: str) -> str: | 
					
						
						|  | """Convert DocTags output to markdown format.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return doctags_output.strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_dataset_card( | 
					
						
						|  | source_dataset: str, | 
					
						
						|  | model: str, | 
					
						
						|  | num_samples: int, | 
					
						
						|  | processing_time: str, | 
					
						
						|  | output_column: str, | 
					
						
						|  | output_format: str, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | max_model_len: int, | 
					
						
						|  | max_tokens: int, | 
					
						
						|  | gpu_memory_utilization: float, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | split: str = "train", | 
					
						
						|  | ) -> str: | 
					
						
						|  | """Create a dataset card documenting the OCR process.""" | 
					
						
						|  | model_name = model.split("/")[-1] | 
					
						
						|  |  | 
					
						
						|  | return f"""--- | 
					
						
						|  | tags: | 
					
						
						|  | - ocr | 
					
						
						|  | - document-processing | 
					
						
						|  | - smoldocling | 
					
						
						|  | - doctags | 
					
						
						|  | - structured-extraction | 
					
						
						|  | - uv-script | 
					
						
						|  | - generated | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Document Processing using {model_name} | 
					
						
						|  |  | 
					
						
						|  | This dataset contains structured document extraction from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using SmolDocling. | 
					
						
						|  |  | 
					
						
						|  | ## Processing Details | 
					
						
						|  |  | 
					
						
						|  | - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) | 
					
						
						|  | - **Model**: [{model}](https://huggingface.co/{model}) | 
					
						
						|  | - **Number of Samples**: {num_samples:,} | 
					
						
						|  | - **Processing Time**: {processing_time} | 
					
						
						|  | - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} | 
					
						
						|  |  | 
					
						
						|  | ### Configuration | 
					
						
						|  |  | 
					
						
						|  | - **Image Column**: `{image_column}` | 
					
						
						|  | - **Output Column**: `{output_column}` | 
					
						
						|  | - **Output Format**: {output_format} | 
					
						
						|  | - **Dataset Split**: `{split}` | 
					
						
						|  | - **Batch Size**: {batch_size} | 
					
						
						|  | - **Max Model Length**: {max_model_len:,} tokens | 
					
						
						|  | - **Max Output Tokens**: {max_tokens:,} | 
					
						
						|  | - **GPU Memory Utilization**: {gpu_memory_utilization:.1%} | 
					
						
						|  |  | 
					
						
						|  | ## Model Information | 
					
						
						|  |  | 
					
						
						|  | SmolDocling-256M is an ultra-compact multimodal model that excels at: | 
					
						
						|  | - 💻 **Code Recognition** - Detects and formats code blocks with proper indentation | 
					
						
						|  | - 🔢 **Formula Recognition** - Identifies and processes mathematical expressions | 
					
						
						|  | - 📊 **Tables & Charts** - Extracts structured data from tables and charts | 
					
						
						|  | - 📐 **Layout Preservation** - Maintains document structure with bounding boxes | 
					
						
						|  | - 🏷️ **DocTags Format** - Efficient minimal representation for documents | 
					
						
						|  | - ⚡ **Fast Inference** - Only 256M parameters for quick processing | 
					
						
						|  |  | 
					
						
						|  | ## Dataset Structure | 
					
						
						|  |  | 
					
						
						|  | The dataset contains all original columns plus: | 
					
						
						|  | - `{output_column}`: The extracted {"DocTags JSON" if output_format == "doctags" else "markdown"} from each image | 
					
						
						|  | - `inference_info`: JSON list tracking all OCR models applied to this dataset | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from datasets import load_dataset | 
					
						
						|  | import json | 
					
						
						|  | {"from docling_core.types.doc import DoclingDocument" if output_format == "doctags" else ""} | 
					
						
						|  | {"from docling_core.types.doc.document import DocTagsDocument" if output_format == "doctags" else ""} | 
					
						
						|  |  | 
					
						
						|  | # Load the dataset | 
					
						
						|  | dataset = load_dataset("{{output_dataset_id}}", split="{split}") | 
					
						
						|  |  | 
					
						
						|  | # Access the extracted content | 
					
						
						|  | for example in dataset: | 
					
						
						|  | {"# Parse DocTags and convert to desired format" if output_format == "doctags" else ""} | 
					
						
						|  | {f"doc_tags = DocTagsDocument.model_validate_json(example['{output_column}'])" if output_format == "doctags" else f"print(example['{output_column}'])"} | 
					
						
						|  | {"doc = DoclingDocument.from_doctags(doc_tags)" if output_format == "doctags" else ""} | 
					
						
						|  | {"print(doc.export(format='md').text)  # Or 'html', 'json'" if output_format == "doctags" else ""} | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | # View all OCR models applied to this dataset | 
					
						
						|  | inference_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | for info in inference_info: | 
					
						
						|  | print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Reproduction | 
					
						
						|  |  | 
					
						
						|  | This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) SmolDocling script: | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py \\ | 
					
						
						|  | {source_dataset} \\ | 
					
						
						|  | <output-dataset> \\ | 
					
						
						|  | --image-column {image_column} \\ | 
					
						
						|  | --output-format {output_format} \\ | 
					
						
						|  | --batch-size {batch_size} \\ | 
					
						
						|  | --max-model-len {max_model_len} \\ | 
					
						
						|  | --max-tokens {max_tokens} \\ | 
					
						
						|  | --gpu-memory-utilization {gpu_memory_utilization} | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Performance | 
					
						
						|  |  | 
					
						
						|  | - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second | 
					
						
						|  | - **Model Size**: 256M parameters (ultra-compact) | 
					
						
						|  | - **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization | 
					
						
						|  |  | 
					
						
						|  | Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main( | 
					
						
						|  | input_dataset: str, | 
					
						
						|  | output_dataset: str, | 
					
						
						|  | image_column: str = "image", | 
					
						
						|  | batch_size: int = 32, | 
					
						
						|  | model: str = "ds4sd/SmolDocling-256M-preview", | 
					
						
						|  | max_model_len: int = 8192, | 
					
						
						|  | max_tokens: int = 8192, | 
					
						
						|  | gpu_memory_utilization: float = 0.8, | 
					
						
						|  | hf_token: str = None, | 
					
						
						|  | split: str = "train", | 
					
						
						|  | max_samples: int = None, | 
					
						
						|  | private: bool = False, | 
					
						
						|  | output_column: str = None, | 
					
						
						|  | output_format: str = "markdown", | 
					
						
						|  | shuffle: bool = False, | 
					
						
						|  | seed: int = 42, | 
					
						
						|  | prompt: str = "Convert page to Docling.", | 
					
						
						|  | ): | 
					
						
						|  | """Process images from HF dataset through SmolDocling model.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_cuda_availability() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_time = datetime.now() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") | 
					
						
						|  | if HF_TOKEN: | 
					
						
						|  | login(token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading dataset: {input_dataset}") | 
					
						
						|  | dataset = load_dataset(input_dataset, split=split) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_column is None: | 
					
						
						|  |  | 
					
						
						|  | model_name = model.split("/")[-1].split("-")[0].lower() | 
					
						
						|  | output_column = f"{model_name}_text" | 
					
						
						|  | logger.info(f"Using dynamic output column name: {output_column}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if image_column not in dataset.column_names: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Column '{image_column}' not found. Available: {dataset.column_names}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_format not in ["markdown", "doctags"]: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid output format '{output_format}'. Must be 'markdown' or 'doctags'" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shuffle: | 
					
						
						|  | logger.info(f"Shuffling dataset with seed {seed}") | 
					
						
						|  | dataset = dataset.shuffle(seed=seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if max_samples: | 
					
						
						|  | dataset = dataset.select(range(min(max_samples, len(dataset)))) | 
					
						
						|  | logger.info(f"Limited to {len(dataset)} samples") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Initializing vLLM with model: {model}") | 
					
						
						|  | llm = LLM( | 
					
						
						|  | model=model, | 
					
						
						|  | trust_remote_code=True, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | limit_mm_per_prompt={"image": 1}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sampling_params = SamplingParams( | 
					
						
						|  | temperature=0.0, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_output = [] | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") | 
					
						
						|  | logger.info(f"Output format: {output_format}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for batch_indices in tqdm( | 
					
						
						|  | partition_all(batch_size, range(len(dataset))), | 
					
						
						|  | total=(len(dataset) + batch_size - 1) // batch_size, | 
					
						
						|  | desc="OCR processing", | 
					
						
						|  | ): | 
					
						
						|  | batch_indices = list(batch_indices) | 
					
						
						|  | batch_images = [dataset[i][image_column] for i in batch_indices] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | batch_inputs = [prepare_llm_input(img, prompt) for img in batch_images] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = llm.generate(batch_inputs, sampling_params=sampling_params) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i, output in enumerate(outputs): | 
					
						
						|  | raw_output = output.outputs[0].text.strip() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_format == "markdown": | 
					
						
						|  | processed_output = convert_doctags_to_markdown(raw_output) | 
					
						
						|  | else: | 
					
						
						|  | processed_output = raw_output | 
					
						
						|  |  | 
					
						
						|  | all_output.append(processed_output) | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | logger.error(f"Error processing batch: {e}") | 
					
						
						|  |  | 
					
						
						|  | all_output.extend(["[OCR FAILED]"] * len(batch_images)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Adding {output_column} column to dataset") | 
					
						
						|  | dataset = dataset.add_column(output_column, all_output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Updating inference_info...") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "inference_info" in dataset.column_names: | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | existing_info = json.loads(dataset[0]["inference_info"]) | 
					
						
						|  | if not isinstance(existing_info, list): | 
					
						
						|  | existing_info = [existing_info] | 
					
						
						|  | except (json.JSONDecodeError, TypeError): | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.remove_columns(["inference_info"]) | 
					
						
						|  | else: | 
					
						
						|  | existing_info = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_info = { | 
					
						
						|  | "column_name": output_column, | 
					
						
						|  | "model_id": model, | 
					
						
						|  | "processing_date": datetime.now().isoformat(), | 
					
						
						|  | "batch_size": batch_size, | 
					
						
						|  | "max_tokens": max_tokens, | 
					
						
						|  | "gpu_memory_utilization": gpu_memory_utilization, | 
					
						
						|  | "max_model_len": max_model_len, | 
					
						
						|  | "output_format": output_format, | 
					
						
						|  | "prompt": prompt, | 
					
						
						|  | "script": "smoldocling-ocr.py", | 
					
						
						|  | "script_version": "1.0.0", | 
					
						
						|  | "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py", | 
					
						
						|  | } | 
					
						
						|  | existing_info.append(new_info) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | info_json = json.dumps(existing_info, ensure_ascii=False) | 
					
						
						|  | dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Pushing to {output_dataset}") | 
					
						
						|  | dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | end_time = datetime.now() | 
					
						
						|  | processing_duration = end_time - start_time | 
					
						
						|  | processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info("Creating dataset card...") | 
					
						
						|  | card_content = create_dataset_card( | 
					
						
						|  | source_dataset=input_dataset, | 
					
						
						|  | model=model, | 
					
						
						|  | num_samples=len(dataset), | 
					
						
						|  | processing_time=processing_time, | 
					
						
						|  | output_column=output_column, | 
					
						
						|  | output_format=output_format, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | max_model_len=max_model_len, | 
					
						
						|  | max_tokens=max_tokens, | 
					
						
						|  | gpu_memory_utilization=gpu_memory_utilization, | 
					
						
						|  | image_column=image_column, | 
					
						
						|  | split=split, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | card = DatasetCard(card_content) | 
					
						
						|  | card.push_to_hub(output_dataset, token=HF_TOKEN) | 
					
						
						|  | logger.info("✅ Dataset card created and pushed!") | 
					
						
						|  |  | 
					
						
						|  | logger.info("✅ OCR conversion complete!") | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 1: | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("SmolDocling Ultra-Compact Document Processing") | 
					
						
						|  | print("=" * 80) | 
					
						
						|  | print("\nThis script extracts structured document content using") | 
					
						
						|  | print("the SmolDocling-256M model with vLLM acceleration.") | 
					
						
						|  | print("\nFeatures:") | 
					
						
						|  | print("- Ultra-compact 256M parameter model") | 
					
						
						|  | print("- DocTags format for efficient representation") | 
					
						
						|  | print("- Code block recognition with indentation") | 
					
						
						|  | print("- Mathematical formula detection") | 
					
						
						|  | print("- Table and chart extraction") | 
					
						
						|  | print("- Layout preservation with bounding boxes") | 
					
						
						|  | print("\nExample usage:") | 
					
						
						|  | print("\n1. Basic document conversion to markdown:") | 
					
						
						|  | print("   uv run smoldocling-ocr.py document-images extracted-docs") | 
					
						
						|  | print("\n2. Extract with DocTags format:") | 
					
						
						|  | print("   uv run smoldocling-ocr.py scientific-papers doc-analysis \\") | 
					
						
						|  | print("       --output-format doctags") | 
					
						
						|  | print("\n3. Custom settings:") | 
					
						
						|  | print("   uv run smoldocling-ocr.py code-docs structured-output \\") | 
					
						
						|  | print("       --image-column page \\") | 
					
						
						|  | print("       --batch-size 64 \\") | 
					
						
						|  | print("       --gpu-memory-utilization 0.9") | 
					
						
						|  | print("\n4. Process a subset for testing:") | 
					
						
						|  | print("   uv run smoldocling-ocr.py large-dataset test-output --max-samples 10") | 
					
						
						|  | print("\n5. Random sample from ordered dataset:") | 
					
						
						|  | print( | 
					
						
						|  | "   uv run smoldocling-ocr.py ordered-dataset random-test --max-samples 50 --shuffle" | 
					
						
						|  | ) | 
					
						
						|  | print("\n6. Running on HF Jobs:") | 
					
						
						|  | print("   hf jobs uv run --flavor l4x1 \\") | 
					
						
						|  | print( | 
					
						
						|  | '     -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\' | 
					
						
						|  | ) | 
					
						
						|  | print( | 
					
						
						|  | "     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py \\" | 
					
						
						|  | ) | 
					
						
						|  | print("       your-document-dataset \\") | 
					
						
						|  | print("       your-structured-output") | 
					
						
						|  | print("\n" + "=" * 80) | 
					
						
						|  | print("\nFor full help, run: uv run smoldocling-ocr.py --help") | 
					
						
						|  | sys.exit(0) | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser( | 
					
						
						|  | description="Extract structured documents using SmolDocling", | 
					
						
						|  | formatter_class=argparse.RawDescriptionHelpFormatter, | 
					
						
						|  | epilog=""" | 
					
						
						|  | Examples: | 
					
						
						|  | # Basic usage | 
					
						
						|  | uv run smoldocling-ocr.py my-images-dataset structured-output | 
					
						
						|  |  | 
					
						
						|  | # With DocTags format output | 
					
						
						|  | uv run smoldocling-ocr.py documents doc-analysis --output-format doctags | 
					
						
						|  |  | 
					
						
						|  | # Process subset for testing | 
					
						
						|  | uv run smoldocling-ocr.py large-dataset test-output --max-samples 100 | 
					
						
						|  |  | 
					
						
						|  | # Random sample of 100 images | 
					
						
						|  | uv run smoldocling-ocr.py ordered-dataset random-sample --max-samples 100 --shuffle | 
					
						
						|  |  | 
					
						
						|  | # Custom output column name (default: smoldocling_text) | 
					
						
						|  | uv run smoldocling-ocr.py images texts --output-column extracted_content | 
					
						
						|  | """, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") | 
					
						
						|  | parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--image-column", | 
					
						
						|  | default="image", | 
					
						
						|  | help="Column containing images (default: image)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--batch-size", | 
					
						
						|  | type=int, | 
					
						
						|  | default=32, | 
					
						
						|  | help="Batch size for processing (default: 32)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--model", | 
					
						
						|  | default="ds4sd/SmolDocling-256M-preview", | 
					
						
						|  | help="Model to use (default: ds4sd/SmolDocling-256M-preview)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-model-len", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8192, | 
					
						
						|  | help="Maximum model context length (default: 8192)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-tokens", | 
					
						
						|  | type=int, | 
					
						
						|  | default=8192, | 
					
						
						|  | help="Maximum tokens to generate (default: 8192)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--gpu-memory-utilization", | 
					
						
						|  | type=float, | 
					
						
						|  | default=0.8, | 
					
						
						|  | help="GPU memory utilization (default: 0.8)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument("--hf-token", help="Hugging Face API token") | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--split", default="train", help="Dataset split to use (default: train)" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--max-samples", | 
					
						
						|  | type=int, | 
					
						
						|  | help="Maximum number of samples to process (for testing)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--private", action="store_true", help="Make output dataset private" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--output-column", | 
					
						
						|  | default=None, | 
					
						
						|  | help="Name of the output column for extracted text (default: auto-generated from model name)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--output-format", | 
					
						
						|  | default="markdown", | 
					
						
						|  | choices=["markdown", "doctags"], | 
					
						
						|  | help="Output format: 'markdown' or 'doctags' (default: markdown)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--shuffle", | 
					
						
						|  | action="store_true", | 
					
						
						|  | help="Shuffle the dataset before processing (useful for random sampling)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--seed", | 
					
						
						|  | type=int, | 
					
						
						|  | default=42, | 
					
						
						|  | help="Random seed for shuffling (default: 42)", | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--prompt", | 
					
						
						|  | default="Convert page to Docling.", | 
					
						
						|  | help="Custom prompt for the model (default: 'Convert page to Docling.')", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | main( | 
					
						
						|  | input_dataset=args.input_dataset, | 
					
						
						|  | output_dataset=args.output_dataset, | 
					
						
						|  | image_column=args.image_column, | 
					
						
						|  | batch_size=args.batch_size, | 
					
						
						|  | model=args.model, | 
					
						
						|  | max_model_len=args.max_model_len, | 
					
						
						|  | max_tokens=args.max_tokens, | 
					
						
						|  | gpu_memory_utilization=args.gpu_memory_utilization, | 
					
						
						|  | hf_token=args.hf_token, | 
					
						
						|  | split=args.split, | 
					
						
						|  | max_samples=args.max_samples, | 
					
						
						|  | private=args.private, | 
					
						
						|  | output_column=args.output_column, | 
					
						
						|  | output_format=args.output_format, | 
					
						
						|  | shuffle=args.shuffle, | 
					
						
						|  | seed=args.seed, | 
					
						
						|  | prompt=args.prompt, | 
					
						
						|  | ) | 
					
						
						|  |  |