viewer: false
tags:
  - uv-script
  - ocr
  - vision-language-model
  - document-processing
OCR UV Scripts
Part of uv-scripts - ready-to-run ML tools powered by UV
Ready-to-run OCR scripts that work with uv run - no setup required!
π Quick Start with HuggingFace Jobs
Run OCR on any dataset without needing your own GPU:
# Quick test with 10 samples
hf jobs uv run --flavor l4x1 \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    your-input-dataset your-output-dataset \
    --max-samples 10
That's it! The script will:
- β Process first 10 images from your dataset
- β
 Add OCR results as a new markdowncolumn
- β Push the results to a new dataset
- π View results at: https://huggingface.co/datasets/[your-output-dataset]
π Available Scripts
	
		
	
	
		LightOnOCR (lighton-ocr.py) β‘ Good one to test first since it's small and fast!
	
Fast and compact OCR using lightonai/LightOnOCR-1B-1025:
- β‘ Fastest: 5.71 pages/sec on H100, ~6.25 images/sec on A100 with batch_size=4096
- π― Compact: Only 1B parameters - quick to download and initialize
- π Multilingual: 3 vocabulary sizes for different use cases
- π LaTeX formulas: Mathematical notation in LaTeX format
- π Table extraction: Markdown table format
- π Document structure: Preserves hierarchy and layout
- π Production-ready: 76.1% benchmark score, used in production
Vocabulary sizes:
- 151k: Full vocabulary, all languages (default)
- 32k: European languages, ~12% faster decoding
- 16k: European languages, ~12% faster decoding
Quick start:
# Test on 100 samples with English text (32k vocab is fastest for European languages)
hf jobs uv run --flavor l4x1 \
    -s HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \
    your-input-dataset your-output-dataset \
    --vocab-size 32k \
    --batch-size 32 \
    --max-samples 100
# Full production run on A100 (can handle huge batches!)
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \
    your-input-dataset your-output-dataset \
    --vocab-size 32k \
    --batch-size 4096 \
    --temperature 0.0
	
		
	
	
		DeepSeek-OCR (deepseek-ocr-vllm.py) β NEW
	
Advanced document OCR using deepseek-ai/DeepSeek-OCR with visual-text compression:
- π LaTeX equations - Mathematical formulas in LaTeX format
- π Tables - Extracted as HTML/markdown
- π Document structure - Headers, lists, formatting preserved
- πΌοΈ Image grounding - Spatial layout with bounding boxes
- π Complex layouts - Multi-column and hierarchical structures
- π Multilingual - Multiple language support
- ποΈ Resolution modes - 5 presets for speed/quality trade-offs
- π¬ Prompt modes - 5 presets for different OCR tasks
- β‘ Fast batch processing - vLLM acceleration
Resolution Modes:
- tiny(512Γ512): Fast, 64 vision tokens
- small(640Γ640): Balanced, 100 vision tokens
- base(1024Γ1024): High quality, 256 vision tokens
- large(1280Γ1280): Maximum quality, 400 vision tokens
- gundam(dynamic): Adaptive multi-tile (default)
Prompt Modes:
- document: Convert to markdown with grounding (default)
- image: OCR any image with grounding
- free: Fast OCR without layout
- figure: Parse figures from documents
- describe: Detailed image descriptions
	
		
	
	
		RolmOCR (rolm-ocr.py)
	
Fast general-purpose OCR using reducto/RolmOCR based on Qwen2.5-VL-7B:
- π Fast extraction - Optimized for speed and efficiency
- π Plain text output - Clean, natural text representation
- πͺ General-purpose - Works well on various document types
- π₯ Large context - Handles up to 16K tokens
- β‘ Batch optimized - Efficient processing with vLLM
	
		
	
	
		Nanonets OCR (nanonets-ocr.py)
	
State-of-the-art document OCR using nanonets/Nanonets-OCR-s that handles:
- π LaTeX equations - Mathematical formulas preserved
- π Tables - Extracted as HTML format
- π Document structure - Headers, lists, formatting maintained
- πΌοΈ Images - Captions and descriptions included
- βοΈ Forms - Checkboxes rendered as β/β
	
		
	
	
		Nanonets OCR2 (nanonets-ocr2.py)
	
Next-generation Nanonets OCR using nanonets/Nanonets-OCR2-3B with improved accuracy:
- π― Enhanced quality - 3.75B parameters for superior OCR accuracy
- π LaTeX equations - Mathematical formulas preserved in LaTeX format
- π Advanced tables - Improved HTML table extraction
- π Document structure - Headers, lists, formatting maintained
- πΌοΈ Smart image captions - Intelligent descriptions and captions
- βοΈ Forms - Checkboxes rendered as β/β
- π Multilingual - Enhanced language support
- π§ Based on Qwen2.5-VL - Built on state-of-the-art vision-language model
	
		
	
	
		SmolDocling (smoldocling-ocr.py)
	
Ultra-compact document understanding using ds4sd/SmolDocling-256M-preview with only 256M parameters:
- π·οΈ DocTags format - Efficient XML-like representation
- π» Code blocks - Preserves indentation and syntax
- π’ Formulas - Mathematical expressions with layout
- π Tables & charts - Structured data extraction
- π Layout preservation - Bounding boxes and spatial info
- β‘ Ultra-fast - Tiny model size for quick inference
	
		
	
	
		NuMarkdown (numarkdown-ocr.py)
	
Advanced reasoning-based OCR using numind/NuMarkdown-8B-Thinking that analyzes documents before converting to markdown:
- π§ Reasoning Process - Thinks through document layout before generation
- π Complex Tables - Superior table extraction and formatting
- π Mathematical Formulas - Accurate LaTeX/math notation preservation
- π Multi-column Layouts - Handles complex document structures
- β¨ Thinking Traces - Optional inclusion of reasoning process with --include-thinking
	
		
	
	
		DoTS.ocr (dots-ocr.py)
	
Compact multilingual OCR using rednote-hilab/dots.ocr with only 1.7B parameters:
- π 100+ Languages - Extensive multilingual support
- π Simple OCR - Clean text extraction (default mode)
- π Layout Analysis - Optional structured output with bboxes and categories
- π Formula recognition - LaTeX format support
- π― Compact - Only 1.7B parameters, efficient on smaller GPUs
- π Flexible prompts - Switch between OCR, layout-all, and layout-only modes
	
		
	
	
		olmOCR2 (olmocr2-vllm.py)
	
High-quality document OCR using allenai/olmOCR-2-7B-1025-FP8 optimized with GRPO reinforcement learning:
- π― High accuracy - 82.4 Β± 1.1 on olmOCR-Bench (84.9% on math)
- π LaTeX equations - Mathematical formulas in LaTeX format
- π Table extraction - Structured table recognition
- π Multi-column layouts - Complex document structures
- ποΈ FP8 quantized - Efficient 8B model for faster inference
- π Degraded scans - Works well on old/historical documents
- π Long text extraction - Headers, footers, and full document content
- π§© YAML metadata - Structured front matter (language, rotation, content type)
- π Based on Qwen2.5-VL-7B - Fine-tuned with reinforcement learning
π New Features
Multi-Model Comparison Support
All scripts now include inference_info tracking for comparing multiple OCR models:
# First model
uv run rolm-ocr.py my-dataset my-dataset --max-samples 100
# Second model (appends to same dataset)
uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100
# View all models used
python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))"
Random Sampling
Get representative samples with the new --shuffle flag:
# Random 50 samples instead of first 50
uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle
# Reproducible random sampling
uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42
Automatic Dataset Cards
Every OCR run now generates comprehensive dataset documentation including:
- Model configuration and parameters
- Processing statistics
- Column descriptions
- Reproduction instructions
π» Usage Examples
Run on HuggingFace Jobs (Recommended)
No GPU? No problem! Run on HF infrastructure:
# DeepSeek-OCR - Real-world example (National Library of Scotland handbooks)
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN \
    -e UV_TORCH_BACKEND=auto \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \
    NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset \
    davanstrien/handbooks-deep-ocr \
    --max-samples 100 \
    --shuffle \
    --resolution-mode large
# DeepSeek-OCR - Fast testing with tiny mode
hf jobs uv run --flavor l4x1 \
    -s HF_TOKEN \
    -e UV_TORCH_BACKEND=auto \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \
    your-input-dataset your-output-dataset \
    --max-samples 10 \
    --resolution-mode tiny
# DeepSeek-OCR - Parse figures from scientific papers
hf jobs uv run --flavor a100-large \
    -s HF_TOKEN \
    -e UV_TORCH_BACKEND=auto \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \
    scientific-papers figures-extracted \
    --prompt-mode figure
# Basic OCR job with Nanonets
hf jobs uv run --flavor l4x1 \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    your-input-dataset your-output-dataset
# DoTS.ocr - Multilingual OCR with compact 1.7B model
hf jobs uv run --flavor a100-large \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
    davanstrien/ufo-ColPali \
    your-username/ufo-ocr \
    --batch-size 256 \
    --max-samples 1000 \
    --shuffle
# Real example with UFO dataset πΈ
hf jobs uv run \
    --flavor a10g-large \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    davanstrien/ufo-ColPali \
    your-username/ufo-ocr \
    --image-column image \
    --max-model-len 16384 \
    --batch-size 128
# Nanonets OCR2 - Next-gen quality with 3B model
hf jobs uv run \
    --flavor l4x1 \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr2.py \
    your-input-dataset \
    your-output-dataset \
    --batch-size 16
# NuMarkdown with reasoning traces for complex documents
hf jobs uv run \
    --flavor l4x4 \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \
    your-input-dataset your-output-dataset \
    --max-samples 50 \
    --include-thinking \
    --shuffle
# olmOCR2 - High-quality OCR with YAML metadata
hf jobs uv run \
    --flavor a100-large \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \
    your-input-dataset your-output-dataset \
    --batch-size 16 \
    --max-samples 100
# Private dataset with custom settings
hf jobs uv run --flavor l40sx1 \
    --secrets HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    private-input private-output \
    --private \
    --batch-size 32
Python API
from huggingface_hub import run_uv_job
job = run_uv_job(
    "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
    args=["input-dataset", "output-dataset", "--batch-size", "16"],
    flavor="l4x1"
)
Run Locally (Requires GPU)
# Clone and run
git clone https://huggingface.co/datasets/uv-scripts/ocr
cd ocr
uv run nanonets-ocr.py input-dataset output-dataset
# Or run directly from URL
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
    input-dataset output-dataset
# RolmOCR for fast text extraction
uv run rolm-ocr.py documents extracted-text
uv run rolm-ocr.py images texts --shuffle --max-samples 100  # Random sample
# Nanonets OCR2 for highest quality
uv run nanonets-ocr2.py documents ocr-results
π Works With
Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting.
ποΈ Configuration Options
Common Options (All Scripts)
| Option | Default | Description | 
|---|---|---|
| --image-column | image | Column containing images | 
| --batch-size | 32/16* | Images processed together | 
| --max-model-len | 8192/16384** | Max context length | 
| --max-tokens | 4096/8192** | Max output tokens | 
| --gpu-memory-utilization | 0.8 | GPU memory usage (0.0-1.0) | 
| --split | train | Dataset split to process | 
| --max-samples | None | Limit samples (for testing) | 
| --private | False | Make output dataset private | 
| --shuffle | False | Shuffle dataset before processing | 
| --seed | 42 | Random seed for shuffling | 
*RolmOCR and DoTS use batch size 16 **RolmOCR uses 16384/8192
Script-Specific Options
DeepSeek-OCR:
- --resolution-mode: Quality level -- tiny,- small,- base,- large, or- gundam(default)
- --prompt-mode: Task type -- document(default),- image,- free,- figure, or- describe
- --prompt: Custom OCR prompt (overrides prompt-mode)
- --base-size,- --image-size,- --crop-mode: Override resolution mode manually
- β οΈ Important for HF Jobs: Add -e UV_TORCH_BACKEND=autofor proper PyTorch installation
RolmOCR:
- Output column is auto-generated from model name (e.g., rolmocr_text)
- Use --output-columnto override the default name
DoTS.ocr:
- --prompt-mode: Choose- ocr(default),- layout-all, or- layout-only
- --custom-prompt: Override with custom prompt text
- --output-column: Output column name (default:- markdown)
π‘ Performance tip: Increase batch size for faster processing (e.g., --batch-size 256 on A100)

