|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Extract structured documents using SmolDocling-256M with vLLM. |
|
|
|
|
|
This script processes images through the SmolDocling model to extract |
|
|
structured document content with DocTags format, ideal for documents |
|
|
with code, formulas, tables, and complex layouts. |
|
|
|
|
|
Features: |
|
|
- Ultra-compact 256M parameter model |
|
|
- DocTags format for efficient representation |
|
|
- Code block recognition with indentation |
|
|
- Mathematical formula detection |
|
|
- Table and chart extraction |
|
|
- Layout preservation with bounding boxes |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import base64 |
|
|
import io |
|
|
import json |
|
|
import logging |
|
|
import os |
|
|
import re |
|
|
import sys |
|
|
from typing import Any, Dict, List, Union |
|
|
from datetime import datetime |
|
|
|
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from docling_core.types.doc import DoclingDocument |
|
|
from docling_core.types.doc.document import DocTagsDocument |
|
|
from huggingface_hub import DatasetCard, login |
|
|
from PIL import Image |
|
|
from toolz import partition_all |
|
|
from tqdm.auto import tqdm |
|
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
def check_cuda_availability(): |
|
|
"""Check if CUDA is available and exit if not.""" |
|
|
if not torch.cuda.is_available(): |
|
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
|
logger.error("Please run on a machine with a CUDA-capable GPU.") |
|
|
sys.exit(1) |
|
|
else: |
|
|
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
|
|
|
def prepare_llm_input( |
|
|
image: Union[Image.Image, Dict[str, Any], str], |
|
|
prompt_text: str = "Convert page to Docling.", |
|
|
) -> Dict: |
|
|
"""Prepare input for vLLM processing.""" |
|
|
|
|
|
if isinstance(image, Image.Image): |
|
|
pil_img = image.convert("RGB") |
|
|
elif isinstance(image, dict) and "bytes" in image: |
|
|
pil_img = Image.open(io.BytesIO(image["bytes"])).convert("RGB") |
|
|
elif isinstance(image, str): |
|
|
pil_img = Image.open(image).convert("RGB") |
|
|
else: |
|
|
raise ValueError(f"Unsupported image type: {type(image)}") |
|
|
|
|
|
|
|
|
chat_template = ( |
|
|
f"<|im_start|>User:<image>{prompt_text}<end_of_utterance>\nAssistant:" |
|
|
) |
|
|
|
|
|
|
|
|
return {"prompt": chat_template, "multi_modal_data": {"image": pil_img}} |
|
|
|
|
|
|
|
|
def convert_doctags_to_markdown(doctags_output: str) -> str: |
|
|
"""Convert DocTags output to markdown format.""" |
|
|
|
|
|
|
|
|
return doctags_output.strip() |
|
|
|
|
|
|
|
|
def create_dataset_card( |
|
|
source_dataset: str, |
|
|
model: str, |
|
|
num_samples: int, |
|
|
processing_time: str, |
|
|
output_column: str, |
|
|
output_format: str, |
|
|
batch_size: int, |
|
|
max_model_len: int, |
|
|
max_tokens: int, |
|
|
gpu_memory_utilization: float, |
|
|
image_column: str = "image", |
|
|
split: str = "train", |
|
|
) -> str: |
|
|
"""Create a dataset card documenting the OCR process.""" |
|
|
model_name = model.split("/")[-1] |
|
|
|
|
|
return f"""--- |
|
|
tags: |
|
|
- ocr |
|
|
- document-processing |
|
|
- smoldocling |
|
|
- doctags |
|
|
- structured-extraction |
|
|
- uv-script |
|
|
- generated |
|
|
--- |
|
|
|
|
|
# Document Processing using {model_name} |
|
|
|
|
|
This dataset contains structured document extraction from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using SmolDocling. |
|
|
|
|
|
## Processing Details |
|
|
|
|
|
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) |
|
|
- **Model**: [{model}](https://huggingface.co/{model}) |
|
|
- **Number of Samples**: {num_samples:,} |
|
|
- **Processing Time**: {processing_time} |
|
|
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} |
|
|
|
|
|
### Configuration |
|
|
|
|
|
- **Image Column**: `{image_column}` |
|
|
- **Output Column**: `{output_column}` |
|
|
- **Output Format**: {output_format} |
|
|
- **Dataset Split**: `{split}` |
|
|
- **Batch Size**: {batch_size} |
|
|
- **Max Model Length**: {max_model_len:,} tokens |
|
|
- **Max Output Tokens**: {max_tokens:,} |
|
|
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%} |
|
|
|
|
|
## Model Information |
|
|
|
|
|
SmolDocling-256M is an ultra-compact multimodal model that excels at: |
|
|
- 💻 **Code Recognition** - Detects and formats code blocks with proper indentation |
|
|
- 🔢 **Formula Recognition** - Identifies and processes mathematical expressions |
|
|
- 📊 **Tables & Charts** - Extracts structured data from tables and charts |
|
|
- 📐 **Layout Preservation** - Maintains document structure with bounding boxes |
|
|
- 🏷️ **DocTags Format** - Efficient minimal representation for documents |
|
|
- ⚡ **Fast Inference** - Only 256M parameters for quick processing |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
The dataset contains all original columns plus: |
|
|
- `{output_column}`: The extracted {"DocTags JSON" if output_format == "doctags" else "markdown"} from each image |
|
|
- `inference_info`: JSON list tracking all OCR models applied to this dataset |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import json |
|
|
{"from docling_core.types.doc import DoclingDocument" if output_format == "doctags" else ""} |
|
|
{"from docling_core.types.doc.document import DocTagsDocument" if output_format == "doctags" else ""} |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("{{output_dataset_id}}", split="{split}") |
|
|
|
|
|
# Access the extracted content |
|
|
for example in dataset: |
|
|
{"# Parse DocTags and convert to desired format" if output_format == "doctags" else ""} |
|
|
{f"doc_tags = DocTagsDocument.model_validate_json(example['{output_column}'])" if output_format == "doctags" else f"print(example['{output_column}'])"} |
|
|
{"doc = DoclingDocument.from_doctags(doc_tags)" if output_format == "doctags" else ""} |
|
|
{"print(doc.export(format='md').text) # Or 'html', 'json'" if output_format == "doctags" else ""} |
|
|
break |
|
|
|
|
|
# View all OCR models applied to this dataset |
|
|
inference_info = json.loads(dataset[0]["inference_info"]) |
|
|
for info in inference_info: |
|
|
print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") |
|
|
``` |
|
|
|
|
|
## Reproduction |
|
|
|
|
|
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) SmolDocling script: |
|
|
|
|
|
```bash |
|
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py \\ |
|
|
{source_dataset} \\ |
|
|
<output-dataset> \\ |
|
|
--image-column {image_column} \\ |
|
|
--output-format {output_format} \\ |
|
|
--batch-size {batch_size} \\ |
|
|
--max-model-len {max_model_len} \\ |
|
|
--max-tokens {max_tokens} \\ |
|
|
--gpu-memory-utilization {gpu_memory_utilization} |
|
|
``` |
|
|
|
|
|
## Performance |
|
|
|
|
|
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second |
|
|
- **Model Size**: 256M parameters (ultra-compact) |
|
|
- **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization |
|
|
|
|
|
Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) |
|
|
""" |
|
|
|
|
|
|
|
|
def main( |
|
|
input_dataset: str, |
|
|
output_dataset: str, |
|
|
image_column: str = "image", |
|
|
batch_size: int = 32, |
|
|
model: str = "ds4sd/SmolDocling-256M-preview", |
|
|
max_model_len: int = 8192, |
|
|
max_tokens: int = 8192, |
|
|
gpu_memory_utilization: float = 0.8, |
|
|
hf_token: str = None, |
|
|
split: str = "train", |
|
|
max_samples: int = None, |
|
|
private: bool = False, |
|
|
output_column: str = None, |
|
|
output_format: str = "markdown", |
|
|
shuffle: bool = False, |
|
|
seed: int = 42, |
|
|
prompt: str = "Convert page to Docling.", |
|
|
): |
|
|
"""Process images from HF dataset through SmolDocling model.""" |
|
|
|
|
|
|
|
|
check_cuda_availability() |
|
|
|
|
|
|
|
|
start_time = datetime.now() |
|
|
|
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
|
if HF_TOKEN: |
|
|
login(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
logger.info(f"Loading dataset: {input_dataset}") |
|
|
dataset = load_dataset(input_dataset, split=split) |
|
|
|
|
|
|
|
|
if output_column is None: |
|
|
|
|
|
model_name = model.split("/")[-1].split("-")[0].lower() |
|
|
output_column = f"{model_name}_text" |
|
|
logger.info(f"Using dynamic output column name: {output_column}") |
|
|
|
|
|
|
|
|
if image_column not in dataset.column_names: |
|
|
raise ValueError( |
|
|
f"Column '{image_column}' not found. Available: {dataset.column_names}" |
|
|
) |
|
|
|
|
|
|
|
|
if output_format not in ["markdown", "doctags"]: |
|
|
raise ValueError( |
|
|
f"Invalid output format '{output_format}'. Must be 'markdown' or 'doctags'" |
|
|
) |
|
|
|
|
|
|
|
|
if shuffle: |
|
|
logger.info(f"Shuffling dataset with seed {seed}") |
|
|
dataset = dataset.shuffle(seed=seed) |
|
|
|
|
|
|
|
|
if max_samples: |
|
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
|
logger.info(f"Limited to {len(dataset)} samples") |
|
|
|
|
|
|
|
|
logger.info(f"Initializing vLLM with model: {model}") |
|
|
llm = LLM( |
|
|
model=model, |
|
|
trust_remote_code=True, |
|
|
max_model_len=max_model_len, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
limit_mm_per_prompt={"image": 1}, |
|
|
) |
|
|
|
|
|
sampling_params = SamplingParams( |
|
|
temperature=0.0, |
|
|
max_tokens=max_tokens, |
|
|
) |
|
|
|
|
|
|
|
|
all_output = [] |
|
|
|
|
|
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") |
|
|
logger.info(f"Output format: {output_format}") |
|
|
|
|
|
|
|
|
for batch_indices in tqdm( |
|
|
partition_all(batch_size, range(len(dataset))), |
|
|
total=(len(dataset) + batch_size - 1) // batch_size, |
|
|
desc="OCR processing", |
|
|
): |
|
|
batch_indices = list(batch_indices) |
|
|
batch_images = [dataset[i][image_column] for i in batch_indices] |
|
|
|
|
|
try: |
|
|
|
|
|
batch_inputs = [prepare_llm_input(img, prompt) for img in batch_images] |
|
|
|
|
|
|
|
|
outputs = llm.generate(batch_inputs, sampling_params=sampling_params) |
|
|
|
|
|
|
|
|
for i, output in enumerate(outputs): |
|
|
raw_output = output.outputs[0].text.strip() |
|
|
|
|
|
|
|
|
if output_format == "markdown": |
|
|
processed_output = convert_doctags_to_markdown(raw_output) |
|
|
else: |
|
|
processed_output = raw_output |
|
|
|
|
|
all_output.append(processed_output) |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error processing batch: {e}") |
|
|
|
|
|
all_output.extend(["[OCR FAILED]"] * len(batch_images)) |
|
|
|
|
|
|
|
|
logger.info(f"Adding {output_column} column to dataset") |
|
|
dataset = dataset.add_column(output_column, all_output) |
|
|
|
|
|
|
|
|
logger.info("Updating inference_info...") |
|
|
|
|
|
|
|
|
if "inference_info" in dataset.column_names: |
|
|
|
|
|
try: |
|
|
existing_info = json.loads(dataset[0]["inference_info"]) |
|
|
if not isinstance(existing_info, list): |
|
|
existing_info = [existing_info] |
|
|
except (json.JSONDecodeError, TypeError): |
|
|
existing_info = [] |
|
|
|
|
|
dataset = dataset.remove_columns(["inference_info"]) |
|
|
else: |
|
|
existing_info = [] |
|
|
|
|
|
|
|
|
new_info = { |
|
|
"column_name": output_column, |
|
|
"model_id": model, |
|
|
"processing_date": datetime.now().isoformat(), |
|
|
"batch_size": batch_size, |
|
|
"max_tokens": max_tokens, |
|
|
"gpu_memory_utilization": gpu_memory_utilization, |
|
|
"max_model_len": max_model_len, |
|
|
"output_format": output_format, |
|
|
"prompt": prompt, |
|
|
"script": "smoldocling-ocr.py", |
|
|
"script_version": "1.0.0", |
|
|
"script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py", |
|
|
} |
|
|
existing_info.append(new_info) |
|
|
|
|
|
|
|
|
info_json = json.dumps(existing_info, ensure_ascii=False) |
|
|
dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) |
|
|
|
|
|
|
|
|
logger.info(f"Pushing to {output_dataset}") |
|
|
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) |
|
|
|
|
|
|
|
|
end_time = datetime.now() |
|
|
processing_duration = end_time - start_time |
|
|
processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" |
|
|
|
|
|
|
|
|
logger.info("Creating dataset card...") |
|
|
card_content = create_dataset_card( |
|
|
source_dataset=input_dataset, |
|
|
model=model, |
|
|
num_samples=len(dataset), |
|
|
processing_time=processing_time, |
|
|
output_column=output_column, |
|
|
output_format=output_format, |
|
|
batch_size=batch_size, |
|
|
max_model_len=max_model_len, |
|
|
max_tokens=max_tokens, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
image_column=image_column, |
|
|
split=split, |
|
|
) |
|
|
|
|
|
card = DatasetCard(card_content) |
|
|
card.push_to_hub(output_dataset, token=HF_TOKEN) |
|
|
logger.info("✅ Dataset card created and pushed!") |
|
|
|
|
|
logger.info("✅ OCR conversion complete!") |
|
|
logger.info( |
|
|
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" |
|
|
) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
if len(sys.argv) == 1: |
|
|
print("=" * 80) |
|
|
print("SmolDocling Ultra-Compact Document Processing") |
|
|
print("=" * 80) |
|
|
print("\nThis script extracts structured document content using") |
|
|
print("the SmolDocling-256M model with vLLM acceleration.") |
|
|
print("\nFeatures:") |
|
|
print("- Ultra-compact 256M parameter model") |
|
|
print("- DocTags format for efficient representation") |
|
|
print("- Code block recognition with indentation") |
|
|
print("- Mathematical formula detection") |
|
|
print("- Table and chart extraction") |
|
|
print("- Layout preservation with bounding boxes") |
|
|
print("\nExample usage:") |
|
|
print("\n1. Basic document conversion to markdown:") |
|
|
print(" uv run smoldocling-ocr.py document-images extracted-docs") |
|
|
print("\n2. Extract with DocTags format:") |
|
|
print(" uv run smoldocling-ocr.py scientific-papers doc-analysis \\") |
|
|
print(" --output-format doctags") |
|
|
print("\n3. Custom settings:") |
|
|
print(" uv run smoldocling-ocr.py code-docs structured-output \\") |
|
|
print(" --image-column page \\") |
|
|
print(" --batch-size 64 \\") |
|
|
print(" --gpu-memory-utilization 0.9") |
|
|
print("\n4. Process a subset for testing:") |
|
|
print(" uv run smoldocling-ocr.py large-dataset test-output --max-samples 10") |
|
|
print("\n5. Random sample from ordered dataset:") |
|
|
print( |
|
|
" uv run smoldocling-ocr.py ordered-dataset random-test --max-samples 50 --shuffle" |
|
|
) |
|
|
print("\n6. Running on HF Jobs:") |
|
|
print(" hf jobs uv run --flavor l4x1 \\") |
|
|
print( |
|
|
' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\' |
|
|
) |
|
|
print( |
|
|
" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/smoldocling-ocr.py \\" |
|
|
) |
|
|
print(" your-document-dataset \\") |
|
|
print(" your-structured-output") |
|
|
print("\n" + "=" * 80) |
|
|
print("\nFor full help, run: uv run smoldocling-ocr.py --help") |
|
|
sys.exit(0) |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
description="Extract structured documents using SmolDocling", |
|
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
|
epilog=""" |
|
|
Examples: |
|
|
# Basic usage |
|
|
uv run smoldocling-ocr.py my-images-dataset structured-output |
|
|
|
|
|
# With DocTags format output |
|
|
uv run smoldocling-ocr.py documents doc-analysis --output-format doctags |
|
|
|
|
|
# Process subset for testing |
|
|
uv run smoldocling-ocr.py large-dataset test-output --max-samples 100 |
|
|
|
|
|
# Random sample of 100 images |
|
|
uv run smoldocling-ocr.py ordered-dataset random-sample --max-samples 100 --shuffle |
|
|
|
|
|
# Custom output column name (default: smoldocling_text) |
|
|
uv run smoldocling-ocr.py images texts --output-column extracted_content |
|
|
""", |
|
|
) |
|
|
|
|
|
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") |
|
|
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") |
|
|
parser.add_argument( |
|
|
"--image-column", |
|
|
default="image", |
|
|
help="Column containing images (default: image)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--batch-size", |
|
|
type=int, |
|
|
default=32, |
|
|
help="Batch size for processing (default: 32)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--model", |
|
|
default="ds4sd/SmolDocling-256M-preview", |
|
|
help="Model to use (default: ds4sd/SmolDocling-256M-preview)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-model-len", |
|
|
type=int, |
|
|
default=8192, |
|
|
help="Maximum model context length (default: 8192)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-tokens", |
|
|
type=int, |
|
|
default=8192, |
|
|
help="Maximum tokens to generate (default: 8192)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gpu-memory-utilization", |
|
|
type=float, |
|
|
default=0.8, |
|
|
help="GPU memory utilization (default: 0.8)", |
|
|
) |
|
|
parser.add_argument("--hf-token", help="Hugging Face API token") |
|
|
parser.add_argument( |
|
|
"--split", default="train", help="Dataset split to use (default: train)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-samples", |
|
|
type=int, |
|
|
help="Maximum number of samples to process (for testing)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--private", action="store_true", help="Make output dataset private" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output-column", |
|
|
default=None, |
|
|
help="Name of the output column for extracted text (default: auto-generated from model name)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output-format", |
|
|
default="markdown", |
|
|
choices=["markdown", "doctags"], |
|
|
help="Output format: 'markdown' or 'doctags' (default: markdown)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--shuffle", |
|
|
action="store_true", |
|
|
help="Shuffle the dataset before processing (useful for random sampling)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--seed", |
|
|
type=int, |
|
|
default=42, |
|
|
help="Random seed for shuffling (default: 42)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--prompt", |
|
|
default="Convert page to Docling.", |
|
|
help="Custom prompt for the model (default: 'Convert page to Docling.')", |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
main( |
|
|
input_dataset=args.input_dataset, |
|
|
output_dataset=args.output_dataset, |
|
|
image_column=args.image_column, |
|
|
batch_size=args.batch_size, |
|
|
model=args.model, |
|
|
max_model_len=args.max_model_len, |
|
|
max_tokens=args.max_tokens, |
|
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
|
hf_token=args.hf_token, |
|
|
split=args.split, |
|
|
max_samples=args.max_samples, |
|
|
private=args.private, |
|
|
output_column=args.output_column, |
|
|
output_format=args.output_format, |
|
|
shuffle=args.shuffle, |
|
|
seed=args.seed, |
|
|
prompt=args.prompt, |
|
|
) |
|
|
|