Nanochat

Nanochat is a small language model from Andrej Karpathy, converted to HuggingFace format.

Model Details

  • Architecture: GPT-style transformer with RoPE, QK normalization, ReLU², and logits softcap
  • Parameters: ~393M
  • Hidden Size: 1280
  • Layers: 20
  • Attention Heads: 10
  • Vocabulary: 65536 tokens
  • Context Length: 2048 tokens

Usage

With Transformers (PyTorch)

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("<model-path>", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("<model-path>")

prompt = "Once upon a time"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0]))

Converting to MLX

To use with Apple's MLX framework:

mlx_lm.convert --hf-path <model-path> --mlx-path nanochat-mlx --trust-remote-code
mlx_lm.generate --model nanochat-mlx --prompt "Once upon a time"

Citation

Original model by Andrej Karpathy: https://github.com/karpathy/nanochat

Downloads last month
100
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for dnakov/nanochat-d20

Finetunes
1 model