w2v-bert-2.0-nchlt-gpu
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the sample of multilingual NCHLT dataset. It achieves the following results on the evaluation set:
- Loss: 26.3390
- Wer: 0.3546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 192.7357 | 0.0669 | 200 | 112.5876 | 1.3313 |
| 46.1394 | 0.1338 | 400 | 49.4396 | 0.5885 |
| 39.6691 | 0.2008 | 600 | 40.5696 | 0.5211 |
| 34.8581 | 0.2677 | 800 | 36.9507 | 0.4672 |
| 28.864 | 0.3346 | 1000 | 32.2841 | 0.4224 |
| 29.1541 | 0.4015 | 1200 | 30.3475 | 0.4116 |
| 27.1871 | 0.4685 | 1400 | 28.8041 | 0.3870 |
| 24.8545 | 0.5354 | 1600 | 27.8487 | 0.3708 |
| 22.4881 | 0.6023 | 1800 | 27.0128 | 0.3594 |
| 25.343 | 0.6692 | 2000 | 26.3390 | 0.3546 |
Framework versions
- Transformers 4.52.0
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 11
Model tree for dsfsi/w2v-bert-2.0-nchlt
Base model
facebook/w2v-bert-2.0