metadata
			language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - autoround
  - auto-round
  - intel
  - gptq
  - woq
  - pytorch
  - transformers
  - safetensors
  - onnx
  - transformers.js
model_name: SmolLM2 1.7B Instruct
base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct
inference: false
model_creator: HuggingFaceTB
pipeline_tag: text-generation
prompt_template: '{prompt} '
quantized_by: fbaldassarri
Model Information
Quantized version of HuggingFaceTB/SmolLM2-1.7B-Instruct using torch.float32 for quantization tuning.
- 4 bits (INT4)
 - group size = 128
 - Symmetrical Quantization
 - Method AutoRound (WOQ)
 
Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)
Quantization framework: Intel AutoRound
Note: this INT4 version of SmolLM2-1.7B-Instruct has been quantized to run inference through CPU.
Replication Recipe
Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
python -m pip install <package> --upgrade
- accelerate==1.0.1
 - auto_gptq==0.7.1
 - neural_compressor==3.1
 - torch==2.3.0+cpu
 - torchaudio==2.5.0+cpu
 - torchvision==0.18.0+cpu
 - transformers==4.45.2
 
Step 2 Build Intel Autoround wheel from sources
python -m pip install git+https://github.com/intel/auto-round.git
Step 3 Script for Quantization
  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym = 4, 128, True
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym)
  autoround.quantize()
  output_dir = "./AutoRound/HuggingFaceTB_SmolLM2-1.7B-Instruct-auto_round-int4-gs128-sym"
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)
License
Disclaimer
This quantized model comes with no warrenty. It has been developed only for research purposes.