ynay-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4107
 - Accuracy: 0.8618
 - Precision: 0.8528
 - Recall: 0.8736
 - F1: 0.8627
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
 - train_batch_size: 64
 - eval_batch_size: 64
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - num_epochs: 3
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | 
|---|---|---|---|---|---|---|---|
| 0.3902 | 1.0 | 714 | 0.4777 | 0.8340 | 0.8092 | 0.8725 | 0.8364 | 
| 0.2974 | 2.0 | 1428 | 0.3960 | 0.8566 | 0.8475 | 0.8691 | 0.8571 | 
| 0.2159 | 3.0 | 2142 | 0.4107 | 0.8618 | 0.8528 | 0.8736 | 0.8627 | 
Framework versions
- Transformers 4.57.1
 - Pytorch 2.8.0+cu126
 - Datasets 4.0.0
 - Tokenizers 0.22.1
 
- Downloads last month
 - 14
 
Model tree for good0neighbour/ynay-model
Base model
monologg/koelectra-base-v3-discriminator