CS2 YOLO - Object Detection
					Collection
				
				6 items
				β’ 
				Updated
					
				β’
					
					4
['CT', 'CT_head', 'T', 'T_head']
from ultralytics import YOLO
# Load a pretrained YOLO model
model = YOLO(r'weights\yolov10s_cs2.pt')
# Run inference on 'image.png' with arguments
model.predict(
    'image.png',
    save=True,
    device=0
    )
YOLOv10s summary (fused): 293 layers, 8,038,056 parameters, 0 gradients, 24.5 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|ββββββββββ| 5/5 [00:03<00:00,  1.41it/s]
                   all        160        372      0.958       0.94      0.979      0.772
               ct_body         88        110      0.964      0.964      0.988      0.861
               ct_head         82        104      0.946      0.847      0.953      0.634
                t_body         70         84      0.986      0.976       0.99      0.866
                t_head         62         74      0.938      0.973      0.984      0.728
Base model
jameslahm/yolov10s