Sakura-SOLAR
					Collection
				
Global LLM Leaderboard Rank1 (2023.12.28)
					β’ 
				6 items
				β’ 
				Updated
					
				
 
  
(μ£Ό)λ―Έλμ΄κ·Έλ£Ήμ¬λκ³Όμ²κ³Ό (μ£Ό)λ§μ»€μ LLM μ°κ΅¬ 컨μμμμμ κ°λ°λ λͺ¨λΈμ λλ€
Model Developers Kyujin Han (kyujinpy)
Method
Using Mergekit.
I shared the information about my model. (training and code)
Please see: βSakura-SOLAR.  
Blog
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | 
|---|---|---|---|---|---|---|---|
| Sakura-SOLRCA-Instruct-DPO | 74.05 | 71.16 | 88.49 | 66.17 | 72.10 | 82.95 | 63.46 | 
| Sakura-SOLAR-Instruct-DPO-v2 | 74.14 | 70.90 | 88.41 | 66.48 | 71.86 | 83.43 | 63.76 | 
| kyujinpy/Sakura-SOLAR-Instruct | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20 | 
Rank1 2023.12.27 PM 11:50
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Sakura-SOLAR-Instruct"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 74.40 | 
| AI2 Reasoning Challenge (25-Shot) | 70.99 | 
| HellaSwag (10-Shot) | 88.42 | 
| MMLU (5-Shot) | 66.33 | 
| TruthfulQA (0-shot) | 71.79 | 
| Winogrande (5-shot) | 83.66 | 
| GSM8k (5-shot) | 65.20 |