Smokey-v3
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
a photo of Smokey the cat, a white and grey cat sitting in a bathtub with a rubber duck
Validation settings
- CFG: 
3.0 - CFG Rescale: 
0.0 - Steps: 
20 - Sampler: 
None - Seed: 
42 - Resolution: 
1024x1024 
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
 - unconditional (blank prompt)
 
- Negative Prompt
 - blurry, cropped, ugly
 

- Prompt
 - a photo of Smokey the cat, a white and grey cat sitting in a bathtub with a rubber duck
 
- Negative Prompt
 - blurry, cropped, ugly
 
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 90
 - Training steps: 2800
 - Learning rate: 0.0001
 - Effective batch size: 8
- Micro-batch size: 8
 - Gradient accumulation steps: 1
 - Number of GPUs: 1
 
 - Prediction type: flow-matching
 - Rescaled betas zero SNR: False
 - Optimizer: adamw_bf16
 - Precision: Pure BF16
 - Quantised: Yes: int8-quanto
 - Xformers: Not used
 - LoRA Rank: 16
 - LoRA Alpha: None
 - LoRA Dropout: 0.1
 - LoRA initialisation style: default
 
Datasets
Smokey-512-crop
- Repeats: 0
 - Total number of images: 114
 - Total number of aspect buckets: 1
 - Resolution: 0.262144 megapixels
 - Cropped: True
 - Crop style: center
 - Crop aspect: square
 
Smokey-1024-crop
- Repeats: 0
 - Total number of images: 124
 - Total number of aspect buckets: 1
 - Resolution: 1.048576 megapixels
 - Cropped: True
 - Crop style: center
 - Crop aspect: square
 
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'markury/Smokey-v3'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "a photo of Smokey the cat, a white and grey cat sitting in a bathtub with a rubber duck"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
 - 5
 
Model tree for markury/Smokey-v3
Base model
black-forest-labs/FLUX.1-dev