YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Binary Tokenizer 005

A BPE tokenizer trained on binary executable files for security research and binary analysis tasks.

Overview

This tokenizer uses Byte Pair Encoding (BPE) trained on latin-1 encoded binary data from system executables across multiple operating systems and architectures (Alpine, Ubuntu, Debian, Rocky Linux, ARM64, x86-64).

  • Vocabulary Size: 65,536 tokens
  • Training Data: System binaries from various OS distributions
  • Encoding: Latin-1 (each byte 0-255 maps to a single character)

Installation

pip install tokenizers transformers

Usage

Method 1: Using the tokenizers library (Recommended)

from tokenizers import Tokenizer

# Load tokenizer directly from Hugging Face Hub
tokenizer = Tokenizer.from_pretrained("mjbommar/binary-tokenizer-005")

# Process binary data - MUST use latin-1 encoding
with open("binary_file", "rb") as f:
    raw_bytes = f.read()
    text = raw_bytes.decode('latin-1')  # Convert bytes to latin-1 string
    encoded = tokenizer.encode(text)
    tokens = encoded.ids
    
# Decode back to text
decoded = tokenizer.decode(tokens)

Method 2: Using transformers library

from transformers import PreTrainedTokenizerFast
from tokenizers import Tokenizer

# Load the base tokenizer
base_tokenizer = Tokenizer.from_pretrained("mjbommar/binary-tokenizer-005")

# Wrap with PreTrainedTokenizerFast for transformers compatibility
tokenizer = PreTrainedTokenizerFast(tokenizer_object=base_tokenizer)

# Process binary data
with open("binary_file", "rb") as f:
    raw_bytes = f.read()
    text = raw_bytes.decode('latin-1')
    
# Tokenize (returns dict with input_ids, attention_mask, etc.)
result = tokenizer(text)
tokens = result["input_ids"]

Important: Data Format

The tokenizer expects binary data encoded as latin-1 strings, NOT hex strings:

# CORRECT - Use latin-1 encoded bytes
raw_bytes = b'\x7fELF\x01\x01'
text = raw_bytes.decode('latin-1')  # โ†’ '\x7fELF\x01\x01'
encoded = tokenizer.encode(text)

# WRONG - Do not use hex strings
hex_str = "7f 45 4c 46 01 01"  # โŒ Will not work correctly

Example: Tokenizing an ELF Header

from tokenizers import Tokenizer

# Load tokenizer
tokenizer = Tokenizer.from_pretrained("mjbommar/binary-tokenizer-005")

# ELF header bytes
elf_header = b'\x7fELF\x01\x01\x01\x00'
text = elf_header.decode('latin-1')

# Tokenize
encoded = tokenizer.encode(text)
print(f"Tokens: {encoded.ids}")  
# Output: [0, 45689, 205, 22648, 1]
# Where: 0='<|start|>', 45689='\x7fEL', 205='F', 22648='\x01\x01\x01\x00', 1='<|end|>'

# Special tokens: <|start|> (id=0) and <|end|> (id=1) mark file boundaries
# This helps models identify file headers and distinguish between files
# Content tokens are: [45689, 205, 22648]

# Note: Decoding adds spaces between tokens (BPE tokenizer behavior)
decoded = tokenizer.decode(encoded.ids)
print(f"Decoded: {repr(decoded)}")  # '\x7fEL F \x01\x01\x01\x00'

Related Projects

License

For research and educational purposes.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support