[GSoC] Gemm and MatMul block quantization support (#268)
Browse files* Gemm and MatMul block quantization support
* refactoring
* fix indentation
* node name independent
- tools/quantize/block_quantize.py +134 -114
tools/quantize/block_quantize.py
CHANGED
|
@@ -14,12 +14,10 @@ import numpy as np
|
|
| 14 |
import onnx
|
| 15 |
from onnx import helper
|
| 16 |
|
| 17 |
-
BITS_TO_NUMPY_TYPE = {8: np.
|
| 18 |
|
| 19 |
|
| 20 |
-
SUPPORTED_OPS = {
|
| 21 |
-
"Conv"
|
| 22 |
-
}
|
| 23 |
|
| 24 |
ONNX_OPSET = 21
|
| 25 |
|
|
@@ -43,12 +41,6 @@ class BlockQuantizeResult:
|
|
| 43 |
quantization_error: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 44 |
|
| 45 |
|
| 46 |
-
@dataclass
|
| 47 |
-
class LayerParams:
|
| 48 |
-
weights: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 49 |
-
bias: Optional[np.ndarray] = None
|
| 50 |
-
|
| 51 |
-
|
| 52 |
def closest_divisor(number: int, divisor: int) -> int:
|
| 53 |
for d in range(divisor, 0, -1):
|
| 54 |
if number % d == 0:
|
|
@@ -169,18 +161,6 @@ class BlockQuantizer:
|
|
| 169 |
|
| 170 |
return None
|
| 171 |
|
| 172 |
-
def get_layer_params(self, node: onnx.NodeProto) -> LayerParams:
|
| 173 |
-
params = LayerParams()
|
| 174 |
-
|
| 175 |
-
weights_name = node.input[1]
|
| 176 |
-
params.weights = self.get_initializer_tensor(weights_name)
|
| 177 |
-
|
| 178 |
-
if len(node.input) > 2:
|
| 179 |
-
bias_name = node.input[2]
|
| 180 |
-
params.bias = self.get_initializer_tensor(bias_name)
|
| 181 |
-
|
| 182 |
-
return params
|
| 183 |
-
|
| 184 |
def compute_scale_zeropoint(
|
| 185 |
self, b_min: np.ndarray, b_max: np.ndarray
|
| 186 |
) -> Tuple[np.ndarray, np.ndarray]:
|
|
@@ -208,24 +188,28 @@ class BlockQuantizer:
|
|
| 208 |
|
| 209 |
def block_quantize(self, weight: np.ndarray) -> BlockQuantizeResult:
|
| 210 |
original_shape = weight.shape
|
| 211 |
-
weight = weight.reshape((weight.shape[0], -1))
|
| 212 |
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
block_size = closest_divisor(
|
|
|
|
|
|
|
| 216 |
|
| 217 |
assert (
|
| 218 |
-
weight.shape[
|
| 219 |
-
), f"weight shape ({weight.shape[
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
|
|
|
| 225 |
|
| 226 |
-
# Warning, axis = 1 specific instruction!
|
| 227 |
blocked_max = np.max(blocked_weight, -1)
|
| 228 |
-
# Warning, axis = 1 specific instruction!
|
| 229 |
blocked_min = np.min(blocked_weight, -1)
|
| 230 |
|
| 231 |
scales, zeropoints = self.compute_scale_zeropoint(blocked_min, blocked_max)
|
|
@@ -273,93 +257,129 @@ class BlockQuantizer:
|
|
| 273 |
def run(self):
|
| 274 |
print("Quantizing the model...")
|
| 275 |
|
| 276 |
-
|
| 277 |
sqe = []
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
| 282 |
if node.op_type in SUPPORTED_OPS:
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
)
|
| 324 |
-
|
| 325 |
-
dequantized_weights_info = helper.make_tensor_value_info(
|
| 326 |
-
dequantized_weights_name,
|
| 327 |
-
onnx.TensorProto.FLOAT,
|
| 328 |
-
block_quantize_res.quantized_weights.shape,
|
| 329 |
-
)
|
| 330 |
-
shape_info = helper.make_tensor_value_info(
|
| 331 |
-
reshaped_weights_name,
|
| 332 |
-
onnx.TensorProto.FLOAT,
|
| 333 |
-
block_quantize_res.original_shape,
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
self.graph.initializer.extend(
|
| 337 |
-
[
|
| 338 |
-
scale_initializer,
|
| 339 |
-
zero_point_initializer,
|
| 340 |
-
shape_tensor,
|
| 341 |
-
quantized_weights_initializer,
|
| 342 |
-
]
|
| 343 |
-
)
|
| 344 |
-
|
| 345 |
-
# Removing fp32 weights
|
| 346 |
-
self.graph.initializer.remove(
|
| 347 |
-
next(
|
| 348 |
-
init
|
| 349 |
-
for init in self.graph.initializer
|
| 350 |
-
if init.name == node.input[1]
|
| 351 |
)
|
| 352 |
-
)
|
| 353 |
-
node.input[1] = reshaped_weights_name
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
-
|
| 362 |
-
|
|
|
|
| 363 |
|
| 364 |
onnx.checker.check_model(self.model, full_check=True)
|
| 365 |
onnx.save(self.model, self.conf.output_model_path)
|
|
|
|
| 14 |
import onnx
|
| 15 |
from onnx import helper
|
| 16 |
|
| 17 |
+
BITS_TO_NUMPY_TYPE = {8: np.int8, 16: np.int16}
|
| 18 |
|
| 19 |
|
| 20 |
+
SUPPORTED_OPS = {"Conv", "Gemm", "MatMul"}
|
|
|
|
|
|
|
| 21 |
|
| 22 |
ONNX_OPSET = 21
|
| 23 |
|
|
|
|
| 41 |
quantization_error: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 42 |
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def closest_divisor(number: int, divisor: int) -> int:
|
| 45 |
for d in range(divisor, 0, -1):
|
| 46 |
if number % d == 0:
|
|
|
|
| 161 |
|
| 162 |
return None
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
def compute_scale_zeropoint(
|
| 165 |
self, b_min: np.ndarray, b_max: np.ndarray
|
| 166 |
) -> Tuple[np.ndarray, np.ndarray]:
|
|
|
|
| 188 |
|
| 189 |
def block_quantize(self, weight: np.ndarray) -> BlockQuantizeResult:
|
| 190 |
original_shape = weight.shape
|
|
|
|
| 191 |
|
| 192 |
+
if weight.ndim > 1:
|
| 193 |
+
weight = weight.reshape((weight.shape[0], -1))
|
| 194 |
+
quantization_axis = 1
|
| 195 |
+
else:
|
| 196 |
+
quantization_axis = 0
|
| 197 |
|
| 198 |
+
block_size = closest_divisor(
|
| 199 |
+
weight.shape[quantization_axis], self.conf.block_size
|
| 200 |
+
)
|
| 201 |
|
| 202 |
assert (
|
| 203 |
+
weight.shape[quantization_axis] % block_size == 0
|
| 204 |
+
), f"weight shape ({weight.shape[quantization_axis]}) must be divisible by block size ({block_size})"
|
| 205 |
|
| 206 |
+
# Flattening the tensor after the quantization axis
|
| 207 |
+
new_shape = list(weight.shape[: quantization_axis + 1]) + [-1]
|
| 208 |
+
new_shape[quantization_axis] = new_shape[quantization_axis] // block_size
|
| 209 |
+
|
| 210 |
+
blocked_weight = weight.reshape(new_shape)
|
| 211 |
|
|
|
|
| 212 |
blocked_max = np.max(blocked_weight, -1)
|
|
|
|
| 213 |
blocked_min = np.min(blocked_weight, -1)
|
| 214 |
|
| 215 |
scales, zeropoints = self.compute_scale_zeropoint(blocked_min, blocked_max)
|
|
|
|
| 257 |
def run(self):
|
| 258 |
print("Quantizing the model...")
|
| 259 |
|
| 260 |
+
quantized_inputs = []
|
| 261 |
sqe = []
|
| 262 |
|
| 263 |
+
node_idx = 0
|
| 264 |
+
|
| 265 |
+
while node_idx < len(self.model.graph.node):
|
| 266 |
+
node = self.model.graph.node[node_idx]
|
| 267 |
+
|
| 268 |
if node.op_type in SUPPORTED_OPS:
|
| 269 |
+
for input_idx, input_name in enumerate(node.input):
|
| 270 |
+
weight = self.get_initializer_tensor(input_name)
|
| 271 |
+
|
| 272 |
+
quantized_weights_name = f"{input_name}_quantized"
|
| 273 |
+
quantized_node_name = f"{input_name}_quantized_node"
|
| 274 |
+
dequantized_weights_name = f"{input_name}_dequantized"
|
| 275 |
+
scales_name = f"{input_name}_scales"
|
| 276 |
+
zero_point_name = f"{input_name}_zero_point"
|
| 277 |
+
|
| 278 |
+
shape_node_name = f"{input_name}_shape_node"
|
| 279 |
+
shape_name = f"{input_name}_shape"
|
| 280 |
+
reshaped_weights_name = f"{input_name}_reshaped"
|
| 281 |
+
|
| 282 |
+
# Skip quantization if weights are taken as external input
|
| 283 |
+
# or if they don't contain enough elements to create at least 1 block
|
| 284 |
+
if weight is None or weight.size < self.conf.block_size:
|
| 285 |
+
continue
|
| 286 |
+
|
| 287 |
+
reshape_needed = weight.ndim > 2
|
| 288 |
+
|
| 289 |
+
# In case of parameter sharing
|
| 290 |
+
if input_name in quantized_inputs:
|
| 291 |
+
node.input[input_idx] = (
|
| 292 |
+
reshaped_weights_name
|
| 293 |
+
if reshape_needed
|
| 294 |
+
else dequantized_weights_name
|
| 295 |
+
)
|
| 296 |
+
continue
|
| 297 |
+
|
| 298 |
+
quantized_inputs.append(input_name)
|
| 299 |
+
block_quantize_res = self.block_quantize(weight)
|
| 300 |
+
|
| 301 |
+
dequantize_node = create_dequantize_node(
|
| 302 |
+
quantized_node_name,
|
| 303 |
+
quantized_weights_name,
|
| 304 |
+
scales_name,
|
| 305 |
+
zero_point_name,
|
| 306 |
+
dequantized_weights_name,
|
| 307 |
+
block_quantize_res.block_size,
|
| 308 |
+
block_quantize_res.axis,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
)
|
|
|
|
|
|
|
| 310 |
|
| 311 |
+
if reshape_needed:
|
| 312 |
+
reshape_node = create_reshape_node(
|
| 313 |
+
shape_node_name,
|
| 314 |
+
dequantized_weights_name,
|
| 315 |
+
shape_name,
|
| 316 |
+
reshaped_weights_name,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
shape_tensor = onnx.numpy_helper.from_array(
|
| 320 |
+
np.array(block_quantize_res.original_shape), name=shape_name
|
| 321 |
+
)
|
| 322 |
+
scale_initializer = onnx.numpy_helper.from_array(
|
| 323 |
+
block_quantize_res.scales, name=scales_name
|
| 324 |
+
)
|
| 325 |
+
zero_point_initializer = onnx.numpy_helper.from_array(
|
| 326 |
+
block_quantize_res.zero_point, name=zero_point_name
|
| 327 |
+
)
|
| 328 |
+
quantized_weights_initializer = onnx.numpy_helper.from_array(
|
| 329 |
+
block_quantize_res.quantized_weights,
|
| 330 |
+
name=quantized_weights_name,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
dequantized_weights_info = helper.make_tensor_value_info(
|
| 334 |
+
dequantized_weights_name,
|
| 335 |
+
onnx.TensorProto.FLOAT,
|
| 336 |
+
block_quantize_res.quantized_weights.shape,
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
if reshape_needed:
|
| 340 |
+
shape_info = helper.make_tensor_value_info(
|
| 341 |
+
reshaped_weights_name,
|
| 342 |
+
onnx.TensorProto.FLOAT,
|
| 343 |
+
block_quantize_res.original_shape,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
self.graph.initializer.extend(
|
| 347 |
+
[
|
| 348 |
+
scale_initializer,
|
| 349 |
+
zero_point_initializer,
|
| 350 |
+
shape_tensor,
|
| 351 |
+
quantized_weights_initializer,
|
| 352 |
+
]
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Removing fp32 weights
|
| 356 |
+
self.graph.initializer.remove(
|
| 357 |
+
next(
|
| 358 |
+
init
|
| 359 |
+
for init in self.graph.initializer
|
| 360 |
+
if init.name == input_name
|
| 361 |
+
)
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
node.input[input_idx] = (
|
| 365 |
+
reshaped_weights_name
|
| 366 |
+
if reshape_needed
|
| 367 |
+
else dequantized_weights_name
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
# Preserving graph nodes topological order
|
| 371 |
+
if reshape_needed:
|
| 372 |
+
self.graph.node.insert(0, reshape_node)
|
| 373 |
+
node_idx += 1
|
| 374 |
+
|
| 375 |
+
self.graph.node.insert(0, dequantize_node)
|
| 376 |
+
node_idx += 1
|
| 377 |
+
self.graph.value_info.insert(0, shape_info)
|
| 378 |
+
self.graph.value_info.insert(0, dequantized_weights_info)
|
| 379 |
|
| 380 |
+
sqe.append(block_quantize_res.quantization_error**2)
|
| 381 |
+
|
| 382 |
+
node_idx += 1
|
| 383 |
|
| 384 |
onnx.checker.check_model(self.model, full_check=True)
|
| 385 |
onnx.save(self.model, self.conf.output_model_path)
|