> Quality โ 3โ4B dense, yet faster than Qwen3-1.7B > MoE designed to run on phones/laptops (llama.cpp / vLLM) > Pre-trained on 12T tokens โ strong math/code/IF
Liquid just released two 450M and 1.6B param VLMs!
They're super fast and leverage SigLIP2 NaFlex encoders to handle native resolutions without distortion. It's ideal for on-device deployment in constrained environments like phones.
It's available today on Hugging Face, with an inference and a fine-tuning Colab notebooks.
I updated the LLM Scientist roadmap and added a ton of new information and references. It covers training, datasets, evaluation, quantization, and new trends like test-time compute scaling.
The LLM Course has been incredibly popular (41.3k stars!) and I've been touched to receive many, many messages about how it helped people in their careers.
I know how difficult this stuff can be, so I'm super proud of the impact it had. I want to keep updating it in 2025, especially with the LLM Engineer roadmap.