If you've ever trained a VLM, you know this problem: nobody shares their data mixtures. It's a black box, making replicating SOTA work impossible. We wanted to change that.
FineVision unifies 200 sources into 24 million samples. With 17.3 million images and 9.5 billion answer tokens, it's the largest open resource of its kind.
In the paper, we share how we built it: 🔍 finding and cleaning data at scale 🧹 removing excessive duplicates across sources 🤗 decontaminating against 66 public benchmarks
My favorite part is Figure 6 (in the video!). It's our visual diversity analysis. It shows that FineVision isn't just bigger; it's more balanced and conceptually richer than other open datasets. NVIDIA's Eagle 2 paper highlighted just how critical this visual diversity is, and our results confirm it: models trained on FineVision consistently outperform those trained on any other open dataset on 11 benchmarks!
🎉 To celebrate the paper, I’m also releasing a concatenated and shuffled version of the full dataset! 👉HuggingFaceM4/FineVision_full_shuffled
It’s ready to stream, so you can start training your own models right away:
from datasets import load_dataset d = load_dataset("HuggingFaceM4/FineVision_full_shuffled", split="train", streaming=True) print(next(iter(d)))
A big shoutout to the first authors: Luis Wiedmann and Orr Zohar. They are rockstars!
Tremendous quality of life upgrade on the Hugging Face Hub - we now have auto-complete emojis 🤗 🥳 👏 🙌 🎉
Get ready for lots more very serious analysis on a whole range of topics from yours truly now that we have unlocked this full range of expression 😄 🤔 🗣 🙊
Smol course has a distinctive approach to teaching post-training, so I'm posting about how it’s different to other post-training courses, including the llm course that’s already available.
In short, the smol course is just more direct that any of the other course, and intended for semi-pro post trainers.
- It’s a minimal set of instructions on the core parts. - It’s intended to bootstrap real projects you're working on. - The material handsover to existing documentation for details - Likewise, it handsover to the LLM course for basics. - Assessment is based on a leaderboard, without reading all the material.
To start the smol course, follow here: smol-course
The course builds on smol course v1 which was the fastest way to learn to train your custom AI models. It now has:
- A leaderboard for students to submit models to - Certification based on exams and leaderboards - Prizes based on Leaderboards - Up to date content on TRL and SmolLM3 - Deep integration with the Hub’s compute for model training and evaluation
We will release chapters every few weeks, so you can follow the org to stay updated.
The open source AI community is just made of people who are passionate and care about their work. So we thought it would be cool to share our favourite icons of the community with a fun award.
Winners get free Hugging Face Pro Subscriptions, Merchandise, or compute credits for the hub.
This is a new initiative to recognise and celebrate the incredible work being done by community members. It's all about inspiring more collaboration and innovation in the world of machine learning and AI.
They're highlighting contributors in four key areas: - model creators: building and sharing innovative and state-of-the-art models. - educators: sharing knowledge through posts, articles, demos, and events. - tool builders: creating the libraries, frameworks, and applications that we all use. - community champions: supporting and mentoring others in forums.
Know someone who deserves recognition? Nominate them by opening a post in the Hugging Face community forum.
Motif 2.6B tech report is pretty insane, first time i see a model with differential attention and polynorm trained at scale!
> It's trained on 2.5T of token, with a "data mixture schedule" to continuously adjust the mixture over training. > They use WSD with a "Simple moving average" averaging the last 6 ckpt every 8B token. > They trained on Finemath, Fineweb2, DCLM, TxT360. > Lot of details in the finetuning data they used, for instance they used EvolKit and did some "dataset fusion" to have more compressed knowledge into the data. > They mention they also tried Normalized GPT, QK-Norm and Cross Layer Attention.