Deepfake Classification 022025
					Collection
				
based on recent dataset
					β’ 
				8 items
				β’ 
				Updated
					
				β’
					
					2
Deepfake-Detection-Exp-02-22 is a minimalist, high-quality dataset trained on a ViT-based model for image classification, distinguishing between deepfake and real images. The model is based on Google's google/vit-base-patch32-224-in21k.
Mapping of IDs to Labels: {0: 'Deepfake', 1: 'Real'} 
Mapping of Labels to IDs: {'Deepfake': 0, 'Real': 1}
Classification report:
        
                      precision    recall  f1-score   support
        
            Deepfake     0.9833    0.9187    0.9499      1600
                Real     0.9238    0.9844    0.9531      1600
        
            accuracy                         0.9516      3200
           macro avg     0.9535    0.9516    0.9515      3200
        weighted avg     0.9535    0.9516    0.9515      3200
from transformers import pipeline
# Load the model
pipe = pipeline('image-classification', model="prithivMLmods/Deepfake-Detection-Exp-02-22", device=0)
# Predict on an image
result = pipe("path_to_image.jpg")
print(result)
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch
# Load the model and processor
model = ViTForImageClassification.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-22")
processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-22")
# Load and preprocess the image
image = Image.open("path_to_image.jpg").convert("RGB")
inputs = processor(images=image, return_tensors="pt")
# Perform inference
with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class = torch.argmax(logits, dim=1).item()
# Map class index to label
label = model.config.id2label[predicted_class]
print(f"Predicted Label: {label}")
vit-base-patch32-224-in21k, it is optimized for 224x224 image resolution, which may limit its effectiveness on high-resolution images.