metadata
			license: apache-2.0
pipeline_tag: image-classification
library_name: transformers
tags:
  - deep-fake
  - detection
  - Image
  - SigLIP2
base_model:
  - google/siglip2-base-patch16-512
datasets:
  - prithivMLmods/OpenDeepfake-Preview
language:
  - en
deepfake-detector-model-v1
deepfake-detector-model-v1is a vision-language encoder model fine-tuned from google/siglip-base-patch16-512 for binary deepfake image classification. It is trained to detect whether an image is real or generated using synthetic media techniques. The model uses theSiglipForImageClassificationarchitecture.
Experimental
Classification Report:
              precision    recall  f1-score   support
        Fake     0.9718    0.9155    0.9428     10000
        Real     0.9201    0.9734    0.9460      9999
    accuracy                         0.9444     19999
   macro avg     0.9459    0.9444    0.9444     19999
weighted avg     0.9459    0.9444    0.9444     19999
Label Space: 2 Classes
The model classifies an image as one of the following:
Class 0: fake  
Class 1: real
Install Dependencies
pip install -q transformers torch pillow gradio hf_xet
Inference Code
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/deepfake-detector-model-v1"  
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Updated label mapping
id2label = {
    "0": "fake",
    "1": "real"
}
def classify_image(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
    prediction = {
        id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
    }
    return prediction
# Gradio Interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Deepfake Classification"),
    title="deepfake-detector-model",
    description="Upload an image to classify whether it is real or fake using a deepfake detection model."
)
if __name__ == "__main__":
    iface.launch()
Intended Use
deepfake-detector-model is designed for:
- Deepfake Detection – Accurately identify fake images generated by AI.
 - Media Authentication – Verify the authenticity of digital visual content.
 - Content Moderation – Assist in filtering synthetic media in online platforms.
 - Forensic Analysis – Support digital forensics by detecting manipulated visual data.
 - Security Applications – Integrate into surveillance systems for authenticity verification.
 

