ControlNet-Canny: Optimized for Mobile Deployment

Generating visual arts from text prompt and input guiding image

On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.

This model is an implementation of ControlNet-Canny found here.

This repository provides scripts to run ControlNet-Canny on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_generation
  • Model Stats:
    • Input: Text prompt and input image as a reference
    • Conditioning Input: Canny-Edge
    • Text Encoder Number of parameters: 340M
    • UNet Number of parameters: 865M
    • VAE Decoder Number of parameters: 83M
    • ControlNet Number of parameters: 361M
    • Model size: 1.4GB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
text_encoder w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 5.515 ms 0 - 163 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 3.957 ms 0 - 19 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 3.109 ms 0 - 15 MB NPU Use Export Script
text_encoder w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 2.66 ms 0 - 10 MB NPU Use Export Script
text_encoder w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 5.654 ms 157 - 157 MB NPU Use Export Script
unet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 117.602 ms 13 - 15 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 84.132 ms 13 - 29 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 66.65 ms 6 - 21 MB NPU Use Export Script
unet w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 48.08 ms 13 - 28 MB NPU Use Export Script
unet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 115.771 ms 829 - 829 MB NPU Use Export Script
vae w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 220.181 ms 0 - 67 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 163.042 ms 3 - 22 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 147.198 ms 3 - 17 MB NPU Use Export Script
vae w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 92.382 ms 3 - 13 MB NPU Use Export Script
vae w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 219.592 ms 59 - 59 MB NPU Use Export Script
controlnet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) PRECOMPILED_QNN_ONNX 59.707 ms 0 - 384 MB NPU Use Export Script
controlnet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 45.254 ms 32 - 46 MB NPU Use Export Script
controlnet w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile PRECOMPILED_QNN_ONNX 33.208 ms 31 - 47 MB NPU Use Export Script
controlnet w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile PRECOMPILED_QNN_ONNX 29.973 ms 15 - 25 MB NPU Use Export Script
controlnet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 59.173 ms 352 - 352 MB NPU Use Export Script

Installation

Install the package via pip:

pip install "qai-hub-models[controlnet-canny]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.controlnet_canny.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.controlnet_canny.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.controlnet_canny.export

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on ControlNet-Canny's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of ControlNet-Canny can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support