DDColor: Optimized for Mobile Deployment
Colorize image from the black-and-white image
DDColor is a coloring algorithm that produces natural, vivid color results from incoming black and white images.
This model is an implementation of DDColor found here.
This repository provides scripts to run DDColor on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_editing
- Model Stats:
- Model checkpoint: ddcolor_paper_tiny.pth
- Input resolution: 224x224
- Number of parameters: 56.3M
- Model size (float): 215 MB
- Model size (w8a8): 54.8 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 249.068 ms | 0 - 332 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1989.568 ms | 0 - 720 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 169.0 ms | 1 - 262 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1235.43 ms | 1 - 253 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 158.008 ms | 0 - 34 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1124.836 ms | 0 - 46 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1127.711 ms | 0 - 167 MB | NPU | DDColor.onnx.zip |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 161.863 ms | 1 - 347 MB | NPU | DDColor.tflite |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1112.75 ms | 1 - 661 MB | NPU | DDColor.dlc |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 249.068 ms | 0 - 332 MB | NPU | DDColor.tflite |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1989.568 ms | 0 - 720 MB | NPU | DDColor.dlc |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 159.856 ms | 0 - 34 MB | NPU | DDColor.tflite |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1127.688 ms | 0 - 45 MB | NPU | DDColor.dlc |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 176.33 ms | 0 - 239 MB | NPU | DDColor.tflite |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1229.554 ms | 0 - 394 MB | NPU | DDColor.dlc |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 159.691 ms | 0 - 35 MB | NPU | DDColor.tflite |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1120.366 ms | 0 - 48 MB | NPU | DDColor.dlc |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 161.863 ms | 1 - 347 MB | NPU | DDColor.tflite |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1112.75 ms | 1 - 661 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 112.938 ms | 1 - 356 MB | NPU | DDColor.tflite |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 839.748 ms | 0 - 837 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 846.043 ms | 1 - 952 MB | NPU | DDColor.onnx.zip |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 95.693 ms | 1 - 309 MB | NPU | DDColor.tflite |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 839.94 ms | 1 - 433 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 859.57 ms | 1 - 565 MB | NPU | DDColor.onnx.zip |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 76.207 ms | 0 - 325 MB | NPU | DDColor.tflite |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 700.968 ms | 0 - 608 MB | NPU | DDColor.dlc |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 690.838 ms | 1 - 673 MB | NPU | DDColor.onnx.zip |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1179.236 ms | 81 - 81 MB | NPU | DDColor.dlc |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1157.963 ms | 113 - 113 MB | NPU | DDColor.onnx.zip |
| DDColor | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3336.441 ms | 0 - 362 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5187.205 ms | 0 - 392 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1772.082 ms | 0 - 395 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2974.197 ms | 1 - 290 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1760.119 ms | 0 - 53 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2717.716 ms | 3 - 65 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1784.176 ms | 0 - 362 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2832.254 ms | 0 - 397 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 614.783 ms | 86 - 116 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 647.012 ms | 328 - 355 MB | CPU | DDColor.onnx.zip |
| DDColor | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 817.267 ms | 63 - 104 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 526.175 ms | 325 - 349 MB | CPU | DDColor.onnx.zip |
| DDColor | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3336.441 ms | 0 - 362 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5187.205 ms | 0 - 392 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1761.455 ms | 0 - 47 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2717.403 ms | 0 - 64 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2019.923 ms | 0 - 370 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3156.066 ms | 0 - 286 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1762.868 ms | 0 - 24 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2716.067 ms | 0 - 66 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1784.176 ms | 0 - 362 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2832.254 ms | 0 - 397 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1337.685 ms | 0 - 381 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2046.081 ms | 0 - 440 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1048.701 ms | 0 - 106 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1786.258 ms | 0 - 285 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1947.273 ms | 47 - 256 MB | NPU | DDColor.onnx.zip |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 925.38 ms | 0 - 111 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1500.827 ms | 0 - 423 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1608.329 ms | 38 - 290 MB | NPU | DDColor.onnx.zip |
| DDColor | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2827.194 ms | 175 - 175 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3266.117 ms | 69 - 69 MB | NPU | DDColor.onnx.zip |
Installation
Install the package via pip:
pip install "qai-hub-models[ddcolor]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ddcolor.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddcolor.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ddcolor.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.ddcolor import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ddcolor.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddcolor.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on DDColor's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of DDColor can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 46
