| ###Instruction: Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using polars. | |
| ###Response: The repository should include the following: | |
| - A `src` directory for the Python source files. | |
| - A `data` directory for the input CSV file. | |
| - A `requirements.txt` file listing the necessary libraries. | |
| - A `README.md` file explaining how to use the tool. | |
| - A `run.sh` script to execute the main program. | |
| Create the repository structure and populate it with the necessary files. ```python | |
| <libs>matplotlib,polars</libs> | |
| <planning> | |
| #1 Create the repository structure. | |
| - Initialize the git repository. | |
| - Create the `src`, `data`, and `docs` directories. | |
| #2 Populate the repository with necessary files. | |
| - Add a `requirements.txt` file with the necessary libraries. | |
| - Add a `README.md` file explaining how to use the tool. | |
| - Add a `run.sh` script to execute the main program. | |
| - Add a Python script in `src` to visualize timeseries data. | |
| </planning> | |
| <requirements>matplotlib==3.5.1 | |
| polars==0.17.0</requirements> | |
| <output><file1>src/visualize_timeseries.py<content> | |
| import polars as pl | |
| import matplotlib.pyplot as plt | |
| def load_timeseries_data(file_path): | |
| """Load timeseries data from a CSV file.""" | |
| return pl.read_csv(file_path, has_headers=True) | |
| def visualize_timeseries(data): | |
| """Visualize the timeseries data.""" | |
| plt.figure(figsize=(10, 6)) | |
| plt.plot(data['timestamp'], data['value'], label='Timeseries Data') | |
| plt.xlabel('Timestamp') | |
| plt.ylabel('Value') | |
| plt.title('Timeseries Visualization') | |
| plt.legend() | |
| plt.grid(True) | |
| plt.show() | |
| if __name__ == "__main__": | |
| file_path = 'data/timeseries.csv' | |
| data = load_timeseries_data(file_path) | |
| visualize_timeseries(data) | |
| </content></file1> | |
| <bashfile>run.sh<content>python3 src/visualize_timeseries.py</content></bashfile> | |
| <readme>README.md<content> | |
| # Timeseries Visualization Tool | |
| This tool visualizes timeseries data loaded from a CSV file using `pandas` for data handling and `matplotlib` for plotting. | |
| ## Requirements | |
| Ensure you have the following libraries installed: | |
| ```bash | |
| pip install -r requirements.txt | |
| ``` | |
| ## Usage | |
| To run the visualization tool, execute the following command: | |
| ```bash | |
| bash run.sh | |
| ``` | |
| ## Data | |
| The tool expects a CSV file named `timeseries.csv` in the `data` directory with the following columns: | |
| - `timestamp`: Timestamp of the data point. | |
| - `value`: Value of the timeseries data. | |
| </content></readme> | |
| </output> |