|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import torch |
|
|
import argparse |
|
|
import sys |
|
|
from proard.classification.data_providers.imagenet import ImagenetDataProvider |
|
|
from proard.classification.data_providers.cifar10 import Cifar10DataProvider |
|
|
from proard.classification.data_providers.cifar100 import Cifar100DataProvider |
|
|
from proard.classification.run_manager import ClassificationRunConfig, RunManager,DistributedRunManager |
|
|
from proard.model_zoo import DYN_net |
|
|
from proard.nas.accuracy_predictor import AccuracyDataset,AccuracyPredictor,ResNetArchEncoder,RobustnessPredictor,MobileNetArchEncoder,AccuracyRobustnessDataset,Accuracy_Robustness_Predictor |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument( |
|
|
"-p", "--path", help="The path of imagenet", type=str, default="/dataset/imagenet" |
|
|
) |
|
|
parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all") |
|
|
parser.add_argument( |
|
|
"-b", |
|
|
"--batch-size", |
|
|
help="The batch on every device for validation", |
|
|
type=int, |
|
|
default=128, |
|
|
) |
|
|
parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20) |
|
|
parser.add_argument( |
|
|
"-n", |
|
|
"--net", |
|
|
metavar="DYNNET", |
|
|
default="MBV3", |
|
|
choices=[ |
|
|
"ResNet50", |
|
|
"MBV3", |
|
|
"ProxylessNASNet", |
|
|
"MBV2" |
|
|
], |
|
|
help="dynamic networks", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--dataset", type=str, default="cifar10" ,choices=["cifar10", "cifar100", "imagenet"] |
|
|
) |
|
|
parser.add_argument("--train_criterion", type=str, default="trades",choices=["trades","sat","mart","hat"]) |
|
|
parser.add_argument( |
|
|
"--robust_mode", type=bool, default=True |
|
|
) |
|
|
parser.add_argument( |
|
|
"--WPS", type=bool, default=False |
|
|
) |
|
|
args = parser.parse_args() |
|
|
if args.gpu == "all": |
|
|
device_list = range(torch.cuda.device_count()) |
|
|
args.gpu = ",".join(str(_) for _ in device_list) |
|
|
else: |
|
|
device_list = [int(_) for _ in args.gpu.split(",")] |
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu |
|
|
args.batch_size = args.batch_size * max(len(device_list), 1) |
|
|
ImagenetDataProvider.DEFAULT_PATH = args.path |
|
|
|
|
|
run_config = ClassificationRunConfig(dataset= args.dataset, test_batch_size=args.batch_size, n_worker=args.workers,robust_mode=args.robust_mode) |
|
|
dyn_network = DYN_net(args.net,args.robust_mode,args.dataset, args.train_criterion ,pretrained=True,run_config=run_config,WPS=args.WPS) |
|
|
""" Randomly sample a sub-network, |
|
|
you can also manually set the sub-network using: |
|
|
dyn_network.set_active_subnet(ks=7, e=6, d=4) |
|
|
""" |
|
|
|
|
|
|
|
|
import random |
|
|
import numpy as np |
|
|
random.seed(0) |
|
|
np.random.seed(0) |
|
|
acc1,rob1,acc2,rob2 =[],[],[],[] |
|
|
if args.net == "ResNet50": |
|
|
arch = ResNetArchEncoder(image_size_list=[224 if args.dataset == 'imagenet' else 32],depth_list=[0,1,2],expand_list=[0.2,0.25,0.35],width_mult_list=[0.65,0.8,1.0]) |
|
|
else: |
|
|
arch = MobileNetArchEncoder (image_size_list=[224 if args.dataset == 'imagenet' else 32],depth_list=[2,3,4],expand_list=[3,4,6],ks_list=[3,5,7]) |
|
|
print(arch) |
|
|
acc_data = AccuracyRobustnessDataset("./acc_rob_data_{}_{}_{}".format(args.dataset,args.net,args.train_criterion)) |
|
|
train_loader, valid_loader, base_acc ,base_rob = acc_data.build_acc_data_loader(arch) |
|
|
for inputs, targets_acc, targets_rob in train_loader: |
|
|
for i in range(len(targets_acc)): |
|
|
acc1.append(targets_acc[i].item() * 100) |
|
|
rob1.append(targets_rob[i].item() * 100) |
|
|
|
|
|
np.save("./results/acc_mbv3.npy",np.array(acc1)) |
|
|
np.save("./results/rob_mbv3.npy",np.array(rob1)) |
|
|
|
|
|
|