Spaces:
Sleeping
Sleeping
File size: 49,000 Bytes
c5ca6dc df380ff 1a5420f c5ca6dc df380ff cef1d4a df380ff cef1d4a c5ca6dc df380ff cef1d4a df380ff cef1d4a df380ff cef1d4a c5ca6dc df380ff c5ca6dc df380ff cef1d4a c5ca6dc cef1d4a c5ca6dc cef1d4a df380ff cef1d4a df380ff cef1d4a df380ff cef1d4a df380ff cef1d4a df380ff cef1d4a df380ff cef1d4a df380ff cef1d4a df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 df380ff aa2c910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 |
from typing import List, Dict
import numpy as np
import librosa
import nltk
import eng_to_ipa as ipa
import torch
import re
from collections import defaultdict
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
from loguru import logger
import time
from src.AI_Models.wave2vec_inference import (
Wave2Vec2Inference,
Wave2Vec2ONNXInference,
export_to_onnx,
)
# Download required NLTK data
try:
nltk.download("cmudict", quiet=True)
from nltk.corpus import cmudict
except:
print("Warning: NLTK data not available")
class Wav2Vec2CharacterASR:
"""Wav2Vec2 character-level ASR with support for both ONNX and Transformers inference"""
def __init__(
self,
model_name: str = "facebook/wav2vec2-large-960h-lv60-self",
onnx: bool = False,
quantized: bool = False,
):
"""
Initialize Wav2Vec2 character-level model
Args:
model_name: HuggingFace model name
onnx: If True, use ONNX runtime for inference. If False, use Transformers
onnx_model_path: Path to the ONNX model file (only used if onnx=True)
"""
self.use_onnx = onnx
self.sample_rate = 16000
self.model_name = model_name
# Check thử path của onnx model có tồn tại hay không
if onnx:
import os
if not os.path.exists(
"wav2vec2-large-960h-lv60-self"
+ (".quant" if quantized else "")
+ ".onnx"
):
export_to_onnx(model_name, quantize=quantized)
self.model = (
Wave2Vec2Inference(model_name)
if not onnx
else Wave2Vec2ONNXInference(
model_name,
"wav2vec2-large-960h-lv60-self"
+ (".quant" if quantized else "")
+ ".onnx",
)
)
def transcribe_to_characters(self, audio_path: str) -> Dict:
try:
start_time = time.time()
character_transcript = self.model.file_to_text(audio_path)
character_transcript = self._clean_character_transcript(
character_transcript
)
phoneme_like_transcript = self._characters_to_phoneme_representation(
character_transcript
)
logger.info(f"Transcription time: {time.time() - start_time:.2f}s")
return {
"character_transcript": character_transcript,
"phoneme_representation": phoneme_like_transcript,
}
except Exception as e:
print(f"Transformers transcription error: {e}")
return self._empty_result()
def _calculate_confidence_scores(self, logits: np.ndarray) -> List[float]:
"""Calculate confidence scores from logits using numpy"""
# Apply softmax
exp_logits = np.exp(logits - np.max(logits, axis=-1, keepdims=True))
softmax_probs = exp_logits / np.sum(exp_logits, axis=-1, keepdims=True)
# Get max probabilities
max_probs = np.max(softmax_probs, axis=-1)[0]
return max_probs.tolist()
def _clean_character_transcript(self, transcript: str) -> str:
"""Clean and standardize character transcript"""
# Remove extra spaces and special tokens
logger.info(f"Raw transcript before cleaning: {transcript}")
cleaned = re.sub(r"\s+", " ", transcript)
cleaned = cleaned.strip().lower()
return cleaned
def _characters_to_phoneme_representation(self, text: str) -> str:
"""Convert character-based transcript to phoneme-like representation for comparison"""
if not text:
return ""
words = text.split()
phoneme_words = []
g2p = SimpleG2P()
for word in words:
try:
if g2p:
word_data = g2p.text_to_phonemes(word)[0]
phoneme_words.extend(word_data["phonemes"])
else:
phoneme_words.extend(self._simple_letter_to_phoneme(word))
except:
# Fallback: simple letter-to-sound mapping
phoneme_words.extend(self._simple_letter_to_phoneme(word))
return " ".join(phoneme_words)
def _simple_letter_to_phoneme(self, word: str) -> List[str]:
"""Simple fallback letter-to-phoneme conversion"""
letter_to_phoneme = {
"a": "æ",
"b": "b",
"c": "k",
"d": "d",
"e": "ɛ",
"f": "f",
"g": "ɡ",
"h": "h",
"i": "ɪ",
"j": "dʒ",
"k": "k",
"l": "l",
"m": "m",
"n": "n",
"o": "ʌ",
"p": "p",
"q": "k",
"r": "r",
"s": "s",
"t": "t",
"u": "ʌ",
"v": "v",
"w": "w",
"x": "ks",
"y": "j",
"z": "z",
}
phonemes = []
for letter in word.lower():
if letter in letter_to_phoneme:
phonemes.append(letter_to_phoneme[letter])
return phonemes
def _empty_result(self) -> Dict:
"""Return empty result structure"""
return {
"character_transcript": "",
"phoneme_representation": "",
"raw_predicted_ids": [],
"confidence_scores": [],
}
def get_model_info(self) -> Dict:
"""Get information about the loaded model"""
info = {
"model_name": self.model_name,
"sample_rate": self.sample_rate,
"inference_method": "ONNX" if self.use_onnx else "Transformers",
}
if self.use_onnx:
info.update(
{
"onnx_model_path": self.onnx_model_path,
"input_name": self.input_name,
"output_name": self.output_name,
"session_providers": self.session.get_providers(),
}
)
return info
class SimpleG2P:
"""Simple Grapheme-to-Phoneme converter for reference text"""
def __init__(self):
try:
self.cmu_dict = cmudict.dict()
except:
self.cmu_dict = {}
print("Warning: CMU dictionary not available")
def text_to_phonemes(self, text: str) -> List[Dict]:
"""Convert text to phoneme sequence"""
words = self._clean_text(text).split()
phoneme_sequence = []
for word in words:
word_phonemes = self._get_word_phonemes(word)
phoneme_sequence.append(
{
"word": word,
"phonemes": word_phonemes,
"ipa": self._get_ipa(word),
"phoneme_string": " ".join(word_phonemes),
}
)
return phoneme_sequence
def get_reference_phoneme_string(self, text: str) -> str:
"""Get reference phoneme string for comparison"""
phoneme_sequence = self.text_to_phonemes(text)
all_phonemes = []
for word_data in phoneme_sequence:
all_phonemes.extend(word_data["phonemes"])
return " ".join(all_phonemes)
def _clean_text(self, text: str) -> str:
"""Clean text for processing"""
text = re.sub(r"[^\w\s\']", " ", text)
text = re.sub(r"\s+", " ", text)
return text.lower().strip()
def _get_word_phonemes(self, word: str) -> List[str]:
"""Get phonemes for a word"""
word_lower = word.lower()
if word_lower in self.cmu_dict:
# Remove stress markers and convert to Wav2Vec2 phoneme format
phonemes = self.cmu_dict[word_lower][0]
clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
return self._convert_to_wav2vec_format(clean_phonemes)
else:
return self._estimate_phonemes(word)
def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
"""Convert CMU phonemes to Wav2Vec2 format"""
# Mapping from CMU to Wav2Vec2/eSpeak phonemes
cmu_to_espeak = {
"AA": "ɑ",
"AE": "æ",
"AH": "ʌ",
"AO": "ɔ",
"AW": "aʊ",
"AY": "aɪ",
"EH": "ɛ",
"ER": "ɝ",
"EY": "eɪ",
"IH": "ɪ",
"IY": "i",
"OW": "oʊ",
"OY": "ɔɪ",
"UH": "ʊ",
"UW": "u",
"B": "b",
"CH": "tʃ",
"D": "d",
"DH": "ð",
"F": "f",
"G": "ɡ",
"HH": "h",
"JH": "dʒ",
"K": "k",
"L": "l",
"M": "m",
"N": "n",
"NG": "ŋ",
"P": "p",
"R": "r",
"S": "s",
"SH": "ʃ",
"T": "t",
"TH": "θ",
"V": "v",
"W": "w",
"Y": "j",
"Z": "z",
"ZH": "ʒ",
}
converted = []
for phoneme in cmu_phonemes:
converted_phoneme = cmu_to_espeak.get(phoneme, phoneme.lower())
converted.append(converted_phoneme)
return converted
def _get_ipa(self, word: str) -> str:
"""Get IPA transcription"""
try:
return ipa.convert(word)
except:
return f"/{word}/"
def _estimate_phonemes(self, word: str) -> List[str]:
"""Estimate phonemes for unknown words"""
# Basic phoneme estimation with eSpeak-style output
phoneme_map = {
"ch": ["tʃ"],
"sh": ["ʃ"],
"th": ["θ"],
"ph": ["f"],
"ck": ["k"],
"ng": ["ŋ"],
"qu": ["k", "w"],
"a": ["æ"],
"e": ["ɛ"],
"i": ["ɪ"],
"o": ["ʌ"],
"u": ["ʌ"],
"b": ["b"],
"c": ["k"],
"d": ["d"],
"f": ["f"],
"g": ["ɡ"],
"h": ["h"],
"j": ["dʒ"],
"k": ["k"],
"l": ["l"],
"m": ["m"],
"n": ["n"],
"p": ["p"],
"r": ["r"],
"s": ["s"],
"t": ["t"],
"v": ["v"],
"w": ["w"],
"x": ["k", "s"],
"y": ["j"],
"z": ["z"],
}
word = word.lower()
phonemes = []
i = 0
while i < len(word):
# Check 2-letter combinations first
if i <= len(word) - 2:
two_char = word[i : i + 2]
if two_char in phoneme_map:
phonemes.extend(phoneme_map[two_char])
i += 2
continue
# Single character
char = word[i]
if char in phoneme_map:
phonemes.extend(phoneme_map[char])
i += 1
return phonemes
def get_visualization_data(self, text: str) -> List[Dict]:
"""Get visualization data for IPA representation"""
words = self._clean_text(text).split()
visualization_data = []
for word in words:
word_phonemes = self._get_word_phonemes(word)
ipa_transcription = self._get_ipa(word)
visualization_data.append({
"word": word,
"phonemes": word_phonemes,
"ipa": ipa_transcription,
"phoneme_string": " ".join(word_phonemes),
"visualization": self._create_phoneme_visualization(word_phonemes)
})
return visualization_data
def _create_phoneme_visualization(self, phonemes: List[str]) -> List[Dict]:
"""Create visualization data for phonemes"""
visualization = []
for phoneme in phonemes:
# Map phonemes to color categories for visualization
color_category = self._get_phoneme_color_category(phoneme)
visualization.append({
"phoneme": phoneme,
"color_category": color_category,
"description": self._get_phoneme_description(phoneme)
})
return visualization
def _get_phoneme_color_category(self, phoneme: str) -> str:
"""Categorize phonemes by color for visualization"""
vowel_phonemes = {"ɑ", "æ", "ʌ", "ɔ", "aʊ", "aɪ", "ɛ", "ɝ", "eɪ", "ɪ", "i", "oʊ", "ɔɪ", "ʊ", "u"}
consonant_phonemes = {
# Plosives
"p", "b", "t", "d", "k", "ɡ",
# Nasals
"m", "n", "ŋ",
# Fricatives
"f", "v", "θ", "ð", "s", "z", "ʃ", "ʒ", "h",
# Affricates
"tʃ", "dʒ",
# Liquids
"l", "r",
# Glides
"w", "j"
}
if phoneme in vowel_phonemes:
return "vowel"
elif phoneme in consonant_phonemes:
return "consonant"
else:
return "other"
def _get_phoneme_description(self, phoneme: str) -> str:
"""Get description for a phoneme"""
descriptions = {
# Vowels
"ɑ": "Open back unrounded vowel (like 'a' in 'father')",
"æ": "Near-open front unrounded vowel (like 'a' in 'cat')",
"ʌ": "Open-mid back unrounded vowel (like 'u' in 'cup')",
"ɔ": "Open-mid back rounded vowel (like 'o' in 'thought')",
"aʊ": "Diphthong (like 'ow' in 'cow')",
"aɪ": "Diphthong (like 'i' in 'bike')",
"ɛ": "Open-mid front unrounded vowel (like 'e' in 'bed')",
"ɝ": "R-colored vowel (like 'er' in 'her')",
"eɪ": "Diphthong (like 'a' in 'cake')",
"ɪ": "Near-close near-front unrounded vowel (like 'i' in 'sit')",
"i": "Close front unrounded vowel (like 'ee' in 'see')",
"oʊ": "Diphthong (like 'o' in 'go')",
"ɔɪ": "Diphthong (like 'oy' in 'boy')",
"ʊ": "Near-close near-back rounded vowel (like 'u' in 'put')",
"u": "Close back rounded vowel (like 'oo' in 'food')",
# Consonants
"p": "Voiceless bilabial plosive (like 'p' in 'pen')",
"b": "Voiced bilabial plosive (like 'b' in 'bat')",
"t": "Voiceless alveolar plosive (like 't' in 'top')",
"d": "Voiced alveolar plosive (like 'd' in 'dog')",
"k": "Voiceless velar plosive (like 'c' in 'cat')",
"ɡ": "Voiced velar plosive (like 'g' in 'go')",
"m": "Bilabial nasal (like 'm' in 'man')",
"n": "Alveolar nasal (like 'n' in 'net')",
"ŋ": "Velar nasal (like 'ng' in 'sing')",
"f": "Voiceless labiodental fricative (like 'f' in 'fan')",
"v": "Voiced labiodental fricative (like 'v' in 'van')",
"θ": "Voiceless dental fricative (like 'th' in 'think')",
"ð": "Voiced dental fricative (like 'th' in 'this')",
"s": "Voiceless alveolar fricative (like 's' in 'sit')",
"z": "Voiced alveolar fricative (like 'z' in 'zip')",
"ʃ": "Voiceless postalveolar fricative (like 'sh' in 'ship')",
"ʒ": "Voiced postalveolar fricative (like 's' in 'measure')",
"h": "Voiceless glottal fricative (like 'h' in 'hat')",
"tʃ": "Voiceless postalveolar affricate (like 'ch' in 'chat')",
"dʒ": "Voiced postalveolar affricate (like 'j' in 'jet')",
"l": "Alveolar lateral approximant (like 'l' in 'let')",
"r": "Alveolar approximant (like 'r' in 'red')",
"w": "Labial-velar approximant (like 'w' in 'wet')",
"j": "Palatal approximant (like 'y' in 'yes')",
}
return descriptions.get(phoneme, f"Phoneme: {phoneme}")
class PhonemeComparator:
"""Compare reference and learner phoneme sequences"""
def __init__(self):
# Vietnamese speakers' common phoneme substitutions
self.substitution_patterns = {
"θ": ["f", "s", "t"], # TH → F, S, T
"ð": ["d", "z", "v"], # DH → D, Z, V
"v": ["w", "f"], # V → W, F
"r": ["l"], # R → L
"l": ["r"], # L → R
"z": ["s"], # Z → S
"ʒ": ["ʃ", "z"], # ZH → SH, Z
"ŋ": ["n"], # NG → N
}
# Difficulty levels for Vietnamese speakers
self.difficulty_map = {
"θ": 0.9, # th (think)
"ð": 0.9, # th (this)
"v": 0.8, # v
"z": 0.8, # z
"ʒ": 0.9, # zh (measure)
"r": 0.7, # r
"l": 0.6, # l
"w": 0.5, # w
"f": 0.4, # f
"s": 0.3, # s
"ʃ": 0.5, # sh
"tʃ": 0.4, # ch
"dʒ": 0.5, # j
"ŋ": 0.3, # ng
}
# Additional Vietnamese substitution patterns
self.extended_substitution_patterns = {
# Common Vietnamese speaker errors
"θ": ["f", "s", "t", "d"], # TH sound
"ð": ["d", "z", "v", "t"], # DH sound
"v": ["w", "f", "b"], # V sound
"w": ["v", "b"], # W sound
"r": ["l", "n"], # R sound
"l": ["r", "n"], # L sound
"z": ["s", "j"], # Z sound
"ʒ": ["ʃ", "z", "s"], # ZH sound
"ʃ": ["s", "ʒ"], # SH sound
"ŋ": ["n", "m"], # NG sound
"tʃ": ["ʃ", "s", "k"], # CH sound
"dʒ": ["ʒ", "j", "g"], # J sound
}
def compare_phoneme_sequences(
self, reference_phonemes: str, learner_phonemes: str
) -> List[Dict]:
"""Compare reference and learner phoneme sequences"""
# Split phoneme strings
ref_phones = reference_phonemes.split()
learner_phones = learner_phonemes.split()
print(f"Reference phonemes: {ref_phones}")
print(f"Learner phonemes: {learner_phones}")
# Simple alignment comparison
comparisons = []
max_len = max(len(ref_phones), len(learner_phones))
for i in range(max_len):
ref_phoneme = ref_phones[i] if i < len(ref_phones) else ""
learner_phoneme = learner_phones[i] if i < len(learner_phones) else ""
if ref_phoneme and learner_phoneme:
# Both present - check accuracy
if ref_phoneme == learner_phoneme:
status = "correct"
score = 1.0
elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
status = "acceptable"
score = 0.7
else:
status = "wrong"
score = 0.2
elif ref_phoneme and not learner_phoneme:
# Missing phoneme
status = "missing"
score = 0.0
elif learner_phoneme and not ref_phoneme:
# Extra phoneme
status = "extra"
score = 0.0
else:
continue
comparison = {
"position": i,
"reference_phoneme": ref_phoneme,
"learner_phoneme": learner_phoneme,
"status": status,
"score": score,
"difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
}
comparisons.append(comparison)
return comparisons
def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
"""Check if learner phoneme is acceptable substitution for Vietnamese speakers"""
acceptable = self.extended_substitution_patterns.get(reference, [])
return learner in acceptable
# =============================================================================
# WORD ANALYZER
# =============================================================================
class WordAnalyzer:
"""Analyze word-level pronunciation accuracy using character-based ASR"""
def __init__(self):
self.g2p = SimpleG2P()
self.comparator = PhonemeComparator()
def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
"""Analyze word-level pronunciation using phoneme representation from character ASR"""
# Get reference phonemes by word
reference_words = self.g2p.text_to_phonemes(reference_text)
# Get overall phoneme comparison
reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
phoneme_comparisons = self.comparator.compare_phoneme_sequences(
reference_phoneme_string, learner_phonemes
)
# Map phonemes back to words
word_highlights = self._create_word_highlights(
reference_words, phoneme_comparisons
)
# Identify wrong words
wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)
return {
"word_highlights": word_highlights,
"phoneme_differences": phoneme_comparisons,
"wrong_words": wrong_words,
}
def _create_word_highlights(
self, reference_words: List[Dict], phoneme_comparisons: List[Dict]
) -> List[Dict]:
"""Create word highlighting data with enhanced visualization"""
word_highlights = []
phoneme_index = 0
for word_data in reference_words:
word = word_data["word"]
word_phonemes = word_data["phonemes"]
num_phonemes = len(word_phonemes)
# Get phoneme scores for this word
word_phoneme_scores = []
for j in range(num_phonemes):
if phoneme_index + j < len(phoneme_comparisons):
comparison = phoneme_comparisons[phoneme_index + j]
word_phoneme_scores.append(comparison["score"])
# Calculate word score
word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0
# Create word highlight with enhanced visualization data
highlight = {
"word": word,
"score": float(word_score),
"status": self._get_word_status(word_score),
"color": self._get_word_color(word_score),
"phonemes": word_phonemes,
"ipa": word_data["ipa"],
"phoneme_scores": word_phoneme_scores,
"phoneme_start_index": phoneme_index,
"phoneme_end_index": phoneme_index + num_phonemes - 1,
# Enhanced visualization data
"phoneme_visualization": self.g2p._create_phoneme_visualization(word_phonemes)
}
word_highlights.append(highlight)
phoneme_index += num_phonemes
return word_highlights
def _identify_wrong_words(
self, word_highlights: List[Dict], phoneme_comparisons: List[Dict]
) -> List[Dict]:
"""Identify words that were pronounced incorrectly"""
wrong_words = []
for word_highlight in word_highlights:
if word_highlight["score"] < 0.6: # Threshold for wrong pronunciation
# Find specific phoneme errors for this word
start_idx = word_highlight["phoneme_start_index"]
end_idx = word_highlight["phoneme_end_index"]
wrong_phonemes = []
missing_phonemes = []
for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
comparison = phoneme_comparisons[i]
if comparison["status"] == "wrong":
wrong_phonemes.append(
{
"expected": comparison["reference_phoneme"],
"actual": comparison["learner_phoneme"],
"difficulty": comparison["difficulty"],
"visualization": self.g2p._create_phoneme_visualization([comparison["reference_phoneme"]])[0]
}
)
elif comparison["status"] == "missing":
missing_phonemes.append(
{
"phoneme": comparison["reference_phoneme"],
"difficulty": comparison["difficulty"],
"visualization": self.g2p._create_phoneme_visualization([comparison["reference_phoneme"]])[0]
}
)
wrong_word = {
"word": word_highlight["word"],
"score": word_highlight["score"],
"expected_phonemes": word_highlight["phonemes"],
"ipa": word_highlight["ipa"],
"wrong_phonemes": wrong_phonemes,
"missing_phonemes": missing_phonemes,
"tips": self._get_vietnamese_tips(wrong_phonemes, missing_phonemes),
# Enhanced visualization data
"phoneme_visualization": word_highlight["phoneme_visualization"]
}
wrong_words.append(wrong_word)
return wrong_words
def _get_word_status(self, score: float) -> str:
"""Get word status from score"""
if score >= 0.8:
return "excellent"
elif score >= 0.6:
return "good"
elif score >= 0.4:
return "needs_practice"
else:
return "poor"
def _get_word_color(self, score: float) -> str:
"""Get color for word highlighting"""
if score >= 0.8:
return "#22c55e" # Green
elif score >= 0.6:
return "#84cc16" # Light green
elif score >= 0.4:
return "#eab308" # Yellow
else:
return "#ef4444" # Red
def _get_vietnamese_tips(
self, wrong_phonemes: List[Dict], missing_phonemes: List[Dict]
) -> List[str]:
"""Get Vietnamese-specific pronunciation tips"""
tips = []
# Tips for specific Vietnamese pronunciation challenges
vietnamese_tips = {
"θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
"ð": "Giống θ nhưng rung dây thanh âm (this, that)",
"v": "Chạm môi dưới vào răng trên, không dùng cả hai môi như tiếng Việt",
"r": "Cuộn lưỡi nhưng không chạm vào vòm miệng, không lăn lưỡi",
"l": "Đầu lưỡi chạm vào vòm miệng sau răng",
"z": "Giống âm 's' nhưng có rung dây thanh âm",
"ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
"w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
}
# Add tips for wrong phonemes
for wrong in wrong_phonemes:
expected = wrong["expected"]
actual = wrong["actual"]
if expected in vietnamese_tips:
tips.append(f"Âm '{expected}': {vietnamese_tips[expected]}")
else:
tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")
# Add tips for missing phonemes
for missing in missing_phonemes:
phoneme = missing["phoneme"]
if phoneme in vietnamese_tips:
tips.append(f"Thiếu âm '{phoneme}': {vietnamese_tips[phoneme]}")
return tips
class SimpleFeedbackGenerator:
"""Generate simple, actionable feedback in Vietnamese"""
def generate_feedback(
self,
overall_score: float,
wrong_words: List[Dict],
phoneme_comparisons: List[Dict],
) -> List[str]:
"""Generate Vietnamese feedback"""
feedback = []
# Overall feedback in Vietnamese
if overall_score >= 0.8:
feedback.append("Phát âm rất tốt! Bạn đã làm xuất sắc.")
elif overall_score >= 0.6:
feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
elif overall_score >= 0.4:
feedback.append(
"Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ."
)
else:
feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")
# Wrong words feedback
if wrong_words:
if len(wrong_words) <= 3:
word_names = [w["word"] for w in wrong_words]
feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
else:
feedback.append(
f"Có {len(wrong_words)} từ cần luyện tập. Tập trung vào từng từ một."
)
# Most problematic phonemes
problem_phonemes = defaultdict(int)
for comparison in phoneme_comparisons:
if comparison["status"] in ["wrong", "missing"]:
phoneme = comparison["reference_phoneme"]
problem_phonemes[phoneme] += 1
if problem_phonemes:
most_difficult = sorted(
problem_phonemes.items(), key=lambda x: x[1], reverse=True
)
top_problem = most_difficult[0][0]
phoneme_tips = {
"θ": "Lưỡi giữa răng, thổi nhẹ",
"ð": "Lưỡi giữa răng, rung dây thanh",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng",
"z": "Như 's' nhưng rung dây thanh",
}
if top_problem in phoneme_tips:
feedback.append(
f"Âm khó nhất '{top_problem}': {phoneme_tips[top_problem]}"
)
return feedback
class SimplePronunciationAssessor:
"""Main pronunciation assessor supporting both normal (Whisper) and advanced (Wav2Vec2) modes
Backward compatible wrapper for EnhancedPronunciationAssessor"""
def __init__(self):
print("Initializing Simple Pronunciation Assessor...")
self.enhanced_assessor = EnhancedPronunciationAssessor()
print("Simple Pronunciation Assessor initialization completed")
def assess_pronunciation(
self, audio_path: str, reference_text: str, mode: str = "normal"
) -> Dict:
"""
Backward compatible assessment function with mode selection
Args:
audio_path: Path to audio file
reference_text: Reference text to compare
mode: 'normal' (Whisper), 'advanced' (Wav2Vec2), or 'auto' (determined by text length)
Output: Word highlights + Phoneme differences + Wrong words
"""
print(f"Starting pronunciation assessment in {mode} mode...")
# Map old modes to new modes for backward compatibility
mode_mapping = {
"normal": "auto",
"advanced": "auto"
}
# Validate and map mode parameter
if mode in mode_mapping:
new_mode = mode_mapping[mode]
print(f"Mapping old mode '{mode}' to new mode '{new_mode}' for backward compatibility")
elif mode in ["word", "sentence", "auto"]:
new_mode = mode
else:
# Default to auto for any invalid mode
new_mode = "auto"
print(f"Invalid mode '{mode}' provided, defaulting to 'auto'")
# Use the enhanced assessor
result = self.enhanced_assessor.assess_pronunciation(
audio_path, reference_text, new_mode
)
# Filter result to maintain backward compatibility
compatible_result = {
"transcript": result["transcript"],
"transcript_phonemes": result["transcript_phonemes"],
"user_phonemes": result["user_phonemes"],
"character_transcript": result["character_transcript"],
"overall_score": result["overall_score"],
"word_highlights": result["word_highlights"],
"phoneme_differences": result["phoneme_differences"],
"wrong_words": result["wrong_words"],
"feedback": result["feedback"],
"processing_info": result["processing_info"],
}
# Add new fields if they exist (for newer clients)
if "reference_phonemes" in result:
compatible_result["reference_phonemes"] = result["reference_phonemes"]
if "phoneme_pairs" in result:
compatible_result["phoneme_pairs"] = result["phoneme_pairs"]
if "phoneme_comparison" in result:
compatible_result["phoneme_comparison"] = result["phoneme_comparison"]
if "prosody_analysis" in result:
compatible_result["prosody_analysis"] = result["prosody_analysis"]
print("Assessment completed successfully")
return compatible_result
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
"""Calculate overall pronunciation score"""
if not phoneme_comparisons:
return 0.0
total_score = sum(comparison["score"] for comparison in phoneme_comparisons)
return total_score / len(phoneme_comparisons)
class EnhancedPronunciationAssessor:
"""Enhanced pronunciation assessor with word mode and sentence mode support"""
def __init__(self):
print("Initializing Enhanced Pronunciation Assessor...")
self.wav2vec2_asr = Wav2Vec2CharacterASR() # Advanced mode
self.whisper_asr = None # Normal mode
self.word_analyzer = WordAnalyzer()
self.feedback_generator = SimpleFeedbackGenerator()
self.g2p = SimpleG2P()
self.comparator = PhonemeComparator()
print("Enhanced Pronunciation Assessor initialization completed")
def assess_pronunciation(
self, audio_path: str, reference_text: str, mode: str = "auto"
) -> Dict:
"""
Enhanced assessment function with mode selection
Args:
audio_path: Path to audio file
reference_text: Reference text to compare
mode: 'word', 'sentence', or 'auto' (automatically determined based on text length)
Returns:
Enhanced assessment results with prosody analysis for sentence mode
"""
print(f"Starting enhanced pronunciation assessment in {mode} mode...")
# Validate and normalize mode parameter
valid_modes = ["word", "sentence", "auto"]
if mode not in valid_modes:
print(f"Invalid mode '{mode}' provided, defaulting to 'auto'")
mode = "auto"
# Determine mode based on text length if auto
if mode == "auto":
word_count = len(reference_text.strip().split())
mode = "word" if word_count <= 3 else "sentence"
print(f"Auto-selected mode: {mode} (word count: {word_count})")
# Step 1: Transcription using Wav2Vec2 character model
print("Step 1: Using Wav2Vec2 character transcription...")
asr_result = self.wav2vec2_asr.transcribe_to_characters(audio_path)
model_info = f"Wav2Vec2-Character ({self.wav2vec2_asr.model})"
character_transcript = asr_result["character_transcript"]
phoneme_representation = asr_result["phoneme_representation"]
print(f"Character transcript: {character_transcript}")
print(f"Phoneme representation: {phoneme_representation}")
# Step 2: Word analysis using phoneme representation
print("Step 2: Analyzing words...")
analysis_result = self.word_analyzer.analyze_words(
reference_text, phoneme_representation
)
# Step 3: Calculate overall score
phoneme_comparisons = analysis_result["phoneme_differences"]
overall_score = self._calculate_overall_score(phoneme_comparisons)
# Step 4: Generate feedback
print("Step 3: Generating feedback...")
feedback = self.feedback_generator.generate_feedback(
overall_score, analysis_result["wrong_words"], phoneme_comparisons
)
# Step 5: Enhanced phoneme comparison using Levenshtein distance
print("Step 4: Performing advanced phoneme comparison...")
reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
enhanced_comparisons = self._enhanced_phoneme_comparison(
reference_phoneme_string, phoneme_representation
)
# Step 6: Prosody analysis for sentence mode
prosody_analysis = {}
if mode == "sentence":
print("Step 5: Performing prosody analysis...")
prosody_analysis = self._analyze_prosody(audio_path, reference_text)
# Step 7: Create phoneme pairs for visualization
phoneme_pairs = self._create_phoneme_pairs(
reference_phoneme_string, phoneme_representation
)
# Step 8: Create phoneme comparison summary
phoneme_comparison_summary = self._create_phoneme_comparison_summary(
phoneme_pairs
)
result = {
"transcript": character_transcript, # What user actually said
"transcript_phonemes": phoneme_representation,
"user_phonemes": phoneme_representation, # Alias for UI clarity
"character_transcript": character_transcript,
"overall_score": overall_score,
"word_highlights": analysis_result["word_highlights"],
"phoneme_differences": enhanced_comparisons,
"wrong_words": analysis_result["wrong_words"],
"feedback": feedback,
"processing_info": {
"model_used": model_info,
"mode": mode,
"character_based": True,
"language_model_correction": False,
"raw_output": True,
},
# Enhanced features
"reference_phonemes": reference_phoneme_string,
"phoneme_pairs": phoneme_pairs,
"phoneme_comparison": phoneme_comparison_summary,
"prosody_analysis": prosody_analysis,
}
print("Enhanced assessment completed successfully")
return result
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
"""Calculate overall pronunciation score"""
if not phoneme_comparisons:
return 0.0
total_score = sum(comparison["score"] for comparison in phoneme_comparisons)
return total_score / len(phoneme_comparisons)
def _enhanced_phoneme_comparison(self, reference: str, learner: str) -> List[Dict]:
"""Enhanced phoneme comparison using Levenshtein distance"""
import difflib
# Split phoneme strings
ref_phones = reference.split()
learner_phones = learner.split()
# Use SequenceMatcher for alignment
matcher = difflib.SequenceMatcher(None, ref_phones, learner_phones)
comparisons = []
for tag, i1, i2, j1, j2 in matcher.get_opcodes():
if tag == 'equal':
# Correct phonemes
for k in range(i2 - i1):
comparisons.append({
"position": len(comparisons),
"reference_phoneme": ref_phones[i1 + k],
"learner_phoneme": learner_phones[j1 + k],
"status": "correct",
"score": 1.0,
"difficulty": self.comparator.difficulty_map.get(ref_phones[i1 + k], 0.3),
})
elif tag == 'delete':
# Missing phonemes
for k in range(i1, i2):
comparisons.append({
"position": len(comparisons),
"reference_phoneme": ref_phones[k],
"learner_phoneme": "",
"status": "missing",
"score": 0.0,
"difficulty": self.comparator.difficulty_map.get(ref_phones[k], 0.3),
})
elif tag == 'insert':
# Extra phonemes
for k in range(j1, j2):
comparisons.append({
"position": len(comparisons),
"reference_phoneme": "",
"learner_phoneme": learner_phones[k],
"status": "extra",
"score": 0.0,
"difficulty": 0.3,
})
elif tag == 'replace':
# Substituted phonemes
max_len = max(i2 - i1, j2 - j1)
for k in range(max_len):
ref_phoneme = ref_phones[i1 + k] if i1 + k < i2 else ""
learner_phoneme = learner_phones[j1 + k] if j1 + k < j2 else ""
if ref_phoneme and learner_phoneme:
# Both present - check if substitution is acceptable
if self.comparator._is_acceptable_substitution(ref_phoneme, learner_phoneme):
status = "acceptable"
score = 0.7
else:
status = "wrong"
score = 0.2
elif ref_phoneme and not learner_phoneme:
status = "missing"
score = 0.0
elif learner_phoneme and not ref_phoneme:
status = "extra"
score = 0.0
else:
continue
comparisons.append({
"position": len(comparisons),
"reference_phoneme": ref_phoneme,
"learner_phoneme": learner_phoneme,
"status": status,
"score": score,
"difficulty": self.comparator.difficulty_map.get(ref_phoneme, 0.3),
})
return comparisons
def _create_phoneme_pairs(self, reference: str, learner: str) -> List[Dict]:
"""Create phoneme pairs for visualization"""
ref_phones = reference.split()
learner_phones = learner.split()
# Use SequenceMatcher for alignment
import difflib
matcher = difflib.SequenceMatcher(None, ref_phones, learner_phones)
pairs = []
for tag, i1, i2, j1, j2 in matcher.get_opcodes():
if tag == 'equal':
for k in range(i2 - i1):
pairs.append({
"reference": ref_phones[i1 + k],
"learner": learner_phones[j1 + k],
"match": True,
"type": "correct"
})
elif tag == 'replace':
max_len = max(i2 - i1, j2 - j1)
for k in range(max_len):
ref_phoneme = ref_phones[i1 + k] if i1 + k < i2 else ""
learner_phoneme = learner_phones[j1 + k] if j1 + k < j2 else ""
pairs.append({
"reference": ref_phoneme,
"learner": learner_phoneme,
"match": False,
"type": "substitution"
})
elif tag == 'delete':
for k in range(i1, i2):
pairs.append({
"reference": ref_phones[k],
"learner": "",
"match": False,
"type": "deletion"
})
elif tag == 'insert':
for k in range(j1, j2):
pairs.append({
"reference": "",
"learner": learner_phones[k],
"match": False,
"type": "insertion"
})
return pairs
def _create_phoneme_comparison_summary(self, phoneme_pairs: List[Dict]) -> Dict:
"""Create a summary of phoneme comparison statistics"""
total = len(phoneme_pairs)
correct = sum(1 for pair in phoneme_pairs if pair["match"])
substitutions = sum(1 for pair in phoneme_pairs if pair["type"] == "substitution")
deletions = sum(1 for pair in phoneme_pairs if pair["type"] == "deletion")
insertions = sum(1 for pair in phoneme_pairs if pair["type"] == "insertion")
return {
"total_phonemes": total,
"correct": correct,
"substitutions": substitutions,
"deletions": deletions,
"insertions": insertions,
"accuracy_percentage": (correct / total * 100) if total > 0 else 0,
"error_rate": ((substitutions + deletions + insertions) / total * 100) if total > 0 else 0
}
def _analyze_prosody(self, audio_path: str, reference_text: str) -> Dict:
"""Analyze prosody features (pitch, rhythm, intensity)"""
try:
# Load audio file
import librosa
y, sr = librosa.load(audio_path, sr=16000)
# Extract prosodic features
# Pitch analysis
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
pitch_values = []
for i in range(pitches.shape[1]):
index = magnitudes[:, i].argmax()
pitch = pitches[index, i]
if pitch > 0: # Only consider non-zero pitch values
pitch_values.append(pitch)
avg_pitch = float(np.mean(pitch_values)) if pitch_values else 0.0
pitch_variability = float(np.std(pitch_values)) if pitch_values else 0.0
# Rhythm analysis (using zero-crossing rate as a proxy)
zcr = librosa.feature.zero_crossing_rate(y)
avg_zcr = float(np.mean(zcr))
# Intensity analysis (RMS energy)
rms = librosa.feature.rms(y=y)
avg_rms = float(np.mean(rms))
# Calculate speaking rate (words per minute)
duration = len(y) / sr # in seconds
word_count = len(reference_text.split())
speaking_rate = (word_count / duration) * 60 if duration > 0 else 0 # words per minute
# Provide feedback based on prosodic features
prosody_feedback = []
if speaking_rate < 100:
prosody_feedback.append("Speaking rate is quite slow. Try to speak at a more natural pace.")
elif speaking_rate > 200:
prosody_feedback.append("Speaking rate is quite fast. Try to slow down for better clarity.")
else:
prosody_feedback.append("Speaking rate is good.")
if pitch_variability < 50:
prosody_feedback.append("Pitch variability is low. Try to use more intonation to make speech more expressive.")
else:
prosody_feedback.append("Good pitch variability, which makes speech more engaging.")
return {
"pitch": {
"average": avg_pitch,
"variability": pitch_variability
},
"rhythm": {
"zero_crossing_rate": avg_zcr
},
"intensity": {
"rms_energy": avg_rms
},
"speaking_rate": {
"words_per_minute": speaking_rate,
"duration_seconds": duration
},
"feedback": prosody_feedback
}
except Exception as e:
print(f"Prosody analysis error: {e}")
return {
"error": f"Prosody analysis failed: {str(e)}",
"pitch": {"average": 0, "variability": 0},
"rhythm": {"zero_crossing_rate": 0},
"intensity": {"rms_energy": 0},
"speaking_rate": {"words_per_minute": 0, "duration_seconds": 0},
"feedback": ["Prosody analysis unavailable"]
}
|