Spaces:
Sleeping
Sleeping
File size: 9,060 Bytes
df380ff 64c08d9 aa2c910 64c08d9 df380ff c5ca6dc 64c08d9 aa2c910 64c08d9 5a412ce 64c08d9 df380ff c6480d4 aa2c910 5a412ce c6480d4 64c08d9 c6480d4 64c08d9 c6480d4 aa2c910 64c08d9 aa2c910 c6480d4 64c08d9 5a412ce df380ff aa2c910 df380ff 64c08d9 aa2c910 df380ff c6480d4 aa2c910 c6480d4 df380ff aa2c910 64c08d9 df380ff 64c08d9 df380ff 64c08d9 df380ff aa2c910 df380ff 64c08d9 df380ff c6480d4 df380ff c6480d4 64c08d9 df380ff 64c08d9 df380ff 64c08d9 c6480d4 64c08d9 5a412ce df380ff 5a412ce 64c08d9 df380ff aa2c910 df380ff aa2c910 5a412ce c6480d4 64c08d9 c6480d4 df380ff c6480d4 df380ff c6480d4 df380ff 64c08d9 df380ff 64c08d9 df380ff 64c08d9 c6480d4 64c08d9 df380ff c6480d4 64c08d9 df380ff 64c08d9 5a412ce c6480d4 64c08d9 aa2c910 c6480d4 df380ff c6480d4 aa2c910 c6480d4 aa2c910 c6480d4 df380ff c6480d4 df380ff 64c08d9 c6480d4 df380ff c6480d4 aa2c910 df380ff c6480d4 aa2c910 df380ff c6480d4 dd47219 df380ff dd47219 c6480d4 df380ff c6480d4 df380ff dd47219 aa2c910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from pydantic import BaseModel
from typing import List, Dict, Optional
import tempfile
import numpy as np
import re
import warnings
from loguru import logger
from src.utils.speaking_utils import convert_numpy_types
# Import the new evaluation system
from evalution import ProductionPronunciationAssessor, EnhancedG2P
warnings.filterwarnings("ignore")
router = APIRouter(prefix="/speaking", tags=["Speaking"])
class PronunciationAssessmentResult(BaseModel):
transcript: str # What the user actually said (character transcript)
transcript_phonemes: str # User's phonemes
user_phonemes: str # Alias for transcript_phonemes for UI clarity
user_ipa: Optional[str] = None # User's IPA notation
reference_ipa: str # Reference IPA notation
reference_phonemes: str # Reference phonemes
character_transcript: str
overall_score: float
word_highlights: List[Dict]
phoneme_differences: List[Dict]
wrong_words: List[Dict]
feedback: List[str]
processing_info: Dict
# Enhanced features
phoneme_pairs: Optional[List[Dict]] = None
phoneme_comparison: Optional[Dict] = None
prosody_analysis: Optional[Dict] = None
assessment_mode: Optional[str] = None
character_level_analysis: Optional[bool] = None
assessor = ProductionPronunciationAssessor()
@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
audio_file: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
reference_text: str = Form(..., description="Reference text to pronounce"),
mode: str = Form(
"auto",
description="Assessment mode: 'word', 'sentence', or 'auto' (determined by text length)",
),
):
"""
Enhanced Pronunciation Assessment API with word/sentence mode support
Key Features:
- Word mode: For single words or short phrases (1-3 words)
- Sentence mode: For longer sentences with prosody analysis
- Advanced phoneme comparison using Levenshtein distance
- Prosody analysis (pitch, rhythm, intensity) for sentence mode
- Detailed phoneme pair visualization
- Vietnamese-optimized feedback and tips
Input: Audio file + Reference text + Mode
Output: Enhanced assessment results with visualization data
"""
import time
start_time = time.time()
# Validate mode and set to auto if invalid
if mode not in ["word", "sentence", "auto"]:
mode = "auto" # Set to auto as default instead of throwing error
logger.info(f"Invalid mode '{mode}' provided, defaulting to 'auto' mode")
# Validate inputs
if not reference_text.strip():
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
if len(reference_text) > 500:
raise HTTPException(
status_code=400, detail="Reference text too long (max 500 characters)"
)
# Check for valid English characters
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
raise HTTPException(
status_code=400,
detail="Text must contain only English letters, spaces, and basic punctuation",
)
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio_file.filename and "." in audio_file.filename:
file_extension = f".{audio_file.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio_file.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
# Run assessment using enhanced assessor
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
# Get reference phonemes and IPA
g2p = EnhancedG2P()
reference_words = reference_text.strip().split()
reference_phonemes_list = []
reference_ipa_list = []
for word in reference_words:
word_phonemes = g2p.text_to_phonemes(word.strip('.,!?;:'))[0]
reference_phonemes_list.append(word_phonemes["phoneme_string"])
reference_ipa_list.append(word_phonemes["ipa"])
# Join phonemes and IPA for the full text
result["reference_phonemes"] = " ".join(reference_phonemes_list)
result["reference_ipa"] = " ".join(reference_ipa_list)
# Create user_ipa from transcript using G2P (same way as reference)
if "transcript" in result and result["transcript"]:
try:
user_transcript = result["transcript"].strip()
user_words = user_transcript.split()
user_ipa_list = []
for word in user_words:
clean_word = word.strip('.,!?;:').lower()
if clean_word: # Skip empty words
try:
word_phonemes = g2p.text_to_phonemes(clean_word)[0]
user_ipa_list.append(word_phonemes["ipa"])
except Exception as e:
logger.warning(f"Failed to get IPA for word '{clean_word}': {e}")
# Fallback: use the word itself
user_ipa_list.append(f"/{clean_word}/")
result["user_ipa"] = " ".join(user_ipa_list) if user_ipa_list else None
logger.info(f"Generated user IPA from transcript '{user_transcript}': '{result['user_ipa']}'")
except Exception as e:
logger.warning(f"Failed to generate user IPA from transcript: {e}")
result["user_ipa"] = None
else:
result["user_ipa"] = None
# Add processing time
processing_time = time.time() - start_time
result["processing_info"]["processing_time"] = processing_time
# Convert numpy types for JSON serialization
final_result = convert_numpy_types(result)
logger.info(
f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
)
return PronunciationAssessmentResult(**final_result)
except Exception as e:
logger.error(f"Assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================
@router.get("/phonemes/{word}")
def get_word_phonemes(word: str):
"""Get phoneme breakdown for a specific word"""
try:
# Use the new EnhancedG2P from evaluation module
from evalution import EnhancedG2P
g2p = EnhancedG2P()
phoneme_data = g2p.text_to_phonemes(word)[0]
# Add difficulty analysis for Vietnamese speakers
difficulty_scores = []
for phoneme in phoneme_data["phonemes"]:
difficulty = g2p.get_difficulty_score(phoneme)
difficulty_scores.append(difficulty)
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
return {
"word": word,
"phonemes": phoneme_data["phonemes"],
"phoneme_string": phoneme_data["phoneme_string"],
"ipa": phoneme_data["ipa"],
"difficulty_score": avg_difficulty,
"difficulty_level": (
"hard"
if avg_difficulty > 0.6
else "medium" if avg_difficulty > 0.4 else "easy"
),
"challenging_phonemes": [
{
"phoneme": p,
"difficulty": g2p.get_difficulty_score(p),
"vietnamese_tip": get_vietnamese_tip(p),
}
for p in phoneme_data["phonemes"]
if g2p.get_difficulty_score(p) > 0.6
],
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
def get_vietnamese_tip(phoneme: str) -> str:
"""Get Vietnamese pronunciation tip for a phoneme"""
tips = {
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
"ð": "Giống θ nhưng rung dây thanh âm",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng sau răng",
"z": "Như 's' nhưng rung dây thanh",
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
"w": "Tròn môi như 'u'",
}
return tips.get(phoneme, f"Luyện âm {phoneme}") |