File size: 6,352 Bytes
df380ff
64c08d9
df380ff
64c08d9
 
 
 
df380ff
 
 
 
 
 
c5ca6dc
64c08d9
 
 
c6480d4
64c08d9
df380ff
c6480d4
 
 
 
 
64c08d9
c6480d4
 
 
64c08d9
c6480d4
64c08d9
 
c6480d4
 
 
 
64c08d9
c6480d4
df380ff
 
 
 
 
64c08d9
 
df380ff
 
c6480d4
df380ff
 
 
c6480d4
 
df380ff
 
c6480d4
64c08d9
df380ff
64c08d9
df380ff
64c08d9
df380ff
 
 
 
 
 
 
64c08d9
 
 
df380ff
c6480d4
df380ff
 
 
 
c6480d4
64c08d9
 
 
df380ff
64c08d9
df380ff
64c08d9
c6480d4
64c08d9
c6480d4
 
df380ff
 
 
 
64c08d9
 
 
df380ff
 
 
 
 
 
c6480d4
64c08d9
c6480d4
df380ff
c6480d4
 
df380ff
 
 
 
 
c6480d4
df380ff
64c08d9
df380ff
64c08d9
df380ff
64c08d9
c6480d4
64c08d9
df380ff
c6480d4
 
 
64c08d9
df380ff
64c08d9
 
c6480d4
64c08d9
c6480d4
 
df380ff
c6480d4
 
 
df380ff
c6480d4
 
 
df380ff
c6480d4
df380ff
64c08d9
 
c6480d4
 
 
 
df380ff
 
 
 
 
c6480d4
 
 
 
df380ff
c6480d4
 
 
df380ff
c6480d4
dd47219
 
df380ff
dd47219
 
c6480d4
 
 
 
 
 
df380ff
c6480d4
 
 
df380ff
dd47219
c6480d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from pydantic import BaseModel
from typing import List, Dict
import tempfile
import numpy as np
import re
import warnings
from loguru import logger
from src.apis.controllers.speaking_controller import (
    SimpleG2P,
    PhonemeComparator,
    SimplePronunciationAssessor,
)
from src.utils.speaking_utils import convert_numpy_types

warnings.filterwarnings("ignore")

router = APIRouter(prefix="/pronunciation", tags=["Pronunciation"])


class PronunciationAssessmentResult(BaseModel):
    transcript: str  # What the user actually said (character transcript)
    transcript_phonemes: str  # User's phonemes
    user_phonemes: str  # Alias for transcript_phonemes for UI clarity
    character_transcript: str
    overall_score: float
    word_highlights: List[Dict]
    phoneme_differences: List[Dict]
    wrong_words: List[Dict]
    feedback: List[str]
    processing_info: Dict


assessor = SimplePronunciationAssessor()


@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
    audio: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
    reference_text: str = Form(..., description="Reference text to pronounce"),
    mode: str = Form(
        "normal",
        description="Assessment mode: 'normal' (Whisper) or 'advanced' (Wav2Vec2)",
    ),
):
    """
    Pronunciation Assessment API with mode selection

    Key Features:
    - Normal mode: Uses Whisper for more accurate transcription with language model
    - Advanced mode: Uses facebook/wav2vec2-large-960h-lv60-self for character transcription
    - NO language model correction in advanced mode (shows actual pronunciation errors)
    - Character-level accuracy converted to phoneme representation
    - Vietnamese-optimized feedback and tips

    Input: Audio file + Reference text + Mode
    Output: Word highlights + Phoneme differences + Wrong words
    """

    import time

    start_time = time.time()

    # Validate mode
    if mode not in ["normal", "advanced"]:
        raise HTTPException(
            status_code=400, detail="Mode must be 'normal' or 'advanced'"
        )

    # Validate inputs
    if not reference_text.strip():
        raise HTTPException(status_code=400, detail="Reference text cannot be empty")

    if len(reference_text) > 500:
        raise HTTPException(
            status_code=400, detail="Reference text too long (max 500 characters)"
        )

    # Check for valid English characters
    if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
        raise HTTPException(
            status_code=400,
            detail="Text must contain only English letters, spaces, and basic punctuation",
        )

    try:
        # Save uploaded file temporarily
        file_extension = ".wav"
        if audio.filename and "." in audio.filename:
            file_extension = f".{audio.filename.split('.')[-1]}"

        with tempfile.NamedTemporaryFile(
            delete=False, suffix=file_extension
        ) as tmp_file:
            content = await audio.read()
            tmp_file.write(content)
            tmp_file.flush()

            logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")

            # Run assessment using selected mode
            result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)

        # Add processing time
        processing_time = time.time() - start_time
        result["processing_info"]["processing_time"] = processing_time

        # Convert numpy types for JSON serialization
        final_result = convert_numpy_types(result)

        logger.info(
            f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
        )

        return PronunciationAssessmentResult(**final_result)

    except Exception as e:
        logger.error(f"Assessment error: {str(e)}")
        import traceback

        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")


# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================


@router.get("/phonemes/{word}")
async def get_word_phonemes(word: str):
    """Get phoneme breakdown for a specific word"""
    try:
        g2p = SimpleG2P()
        phoneme_data = g2p.text_to_phonemes(word)[0]

        # Add difficulty analysis for Vietnamese speakers
        difficulty_scores = []
        comparator = PhonemeComparator()

        for phoneme in phoneme_data["phonemes"]:
            difficulty = comparator.difficulty_map.get(phoneme, 0.3)
            difficulty_scores.append(difficulty)

        avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3

        return {
            "word": word,
            "phonemes": phoneme_data["phonemes"],
            "phoneme_string": phoneme_data["phoneme_string"],
            "ipa": phoneme_data["ipa"],
            "difficulty_score": avg_difficulty,
            "difficulty_level": (
                "hard"
                if avg_difficulty > 0.6
                else "medium" if avg_difficulty > 0.4 else "easy"
            ),
            "challenging_phonemes": [
                {
                    "phoneme": p,
                    "difficulty": comparator.difficulty_map.get(p, 0.3),
                    "vietnamese_tip": get_vietnamese_tip(p),
                }
                for p in phoneme_data["phonemes"]
                if comparator.difficulty_map.get(p, 0.3) > 0.6
            ],
        }

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")


def get_vietnamese_tip(phoneme: str) -> str:
    """Get Vietnamese pronunciation tip for a phoneme"""
    tips = {
        "θ": "Đặt lưỡi giữa răng, thổi nhẹ",
        "ð": "Giống θ nhưng rung dây thanh âm",
        "v": "Môi dưới chạm răng trên",
        "r": "Cuộn lưỡi, không chạm vòm miệng",
        "l": "Lưỡi chạm vòm miệng sau răng",
        "z": "Như 's' nhưng rung dây thanh",
        "ʒ": "Như 'ʃ' nhưng rung dây thanh",
        "w": "Tròn môi như 'u'",
    }
    return tips.get(phoneme, f"Luyện âm {phoneme}")