Spaces:
Sleeping
Sleeping
File size: 6,352 Bytes
df380ff 64c08d9 df380ff 64c08d9 df380ff c5ca6dc 64c08d9 c6480d4 64c08d9 df380ff c6480d4 64c08d9 c6480d4 64c08d9 c6480d4 64c08d9 c6480d4 64c08d9 c6480d4 df380ff 64c08d9 df380ff c6480d4 df380ff c6480d4 df380ff c6480d4 64c08d9 df380ff 64c08d9 df380ff 64c08d9 df380ff 64c08d9 df380ff c6480d4 df380ff c6480d4 64c08d9 df380ff 64c08d9 df380ff 64c08d9 c6480d4 64c08d9 c6480d4 df380ff 64c08d9 df380ff c6480d4 64c08d9 c6480d4 df380ff c6480d4 df380ff c6480d4 df380ff 64c08d9 df380ff 64c08d9 df380ff 64c08d9 c6480d4 64c08d9 df380ff c6480d4 64c08d9 df380ff 64c08d9 c6480d4 64c08d9 c6480d4 df380ff c6480d4 df380ff c6480d4 df380ff c6480d4 df380ff 64c08d9 c6480d4 df380ff c6480d4 df380ff c6480d4 df380ff c6480d4 dd47219 df380ff dd47219 c6480d4 df380ff c6480d4 df380ff dd47219 c6480d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from pydantic import BaseModel
from typing import List, Dict
import tempfile
import numpy as np
import re
import warnings
from loguru import logger
from src.apis.controllers.speaking_controller import (
SimpleG2P,
PhonemeComparator,
SimplePronunciationAssessor,
)
from src.utils.speaking_utils import convert_numpy_types
warnings.filterwarnings("ignore")
router = APIRouter(prefix="/pronunciation", tags=["Pronunciation"])
class PronunciationAssessmentResult(BaseModel):
transcript: str # What the user actually said (character transcript)
transcript_phonemes: str # User's phonemes
user_phonemes: str # Alias for transcript_phonemes for UI clarity
character_transcript: str
overall_score: float
word_highlights: List[Dict]
phoneme_differences: List[Dict]
wrong_words: List[Dict]
feedback: List[str]
processing_info: Dict
assessor = SimplePronunciationAssessor()
@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
audio: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
reference_text: str = Form(..., description="Reference text to pronounce"),
mode: str = Form(
"normal",
description="Assessment mode: 'normal' (Whisper) or 'advanced' (Wav2Vec2)",
),
):
"""
Pronunciation Assessment API with mode selection
Key Features:
- Normal mode: Uses Whisper for more accurate transcription with language model
- Advanced mode: Uses facebook/wav2vec2-large-960h-lv60-self for character transcription
- NO language model correction in advanced mode (shows actual pronunciation errors)
- Character-level accuracy converted to phoneme representation
- Vietnamese-optimized feedback and tips
Input: Audio file + Reference text + Mode
Output: Word highlights + Phoneme differences + Wrong words
"""
import time
start_time = time.time()
# Validate mode
if mode not in ["normal", "advanced"]:
raise HTTPException(
status_code=400, detail="Mode must be 'normal' or 'advanced'"
)
# Validate inputs
if not reference_text.strip():
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
if len(reference_text) > 500:
raise HTTPException(
status_code=400, detail="Reference text too long (max 500 characters)"
)
# Check for valid English characters
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
raise HTTPException(
status_code=400,
detail="Text must contain only English letters, spaces, and basic punctuation",
)
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio.filename and "." in audio.filename:
file_extension = f".{audio.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
# Run assessment using selected mode
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
# Add processing time
processing_time = time.time() - start_time
result["processing_info"]["processing_time"] = processing_time
# Convert numpy types for JSON serialization
final_result = convert_numpy_types(result)
logger.info(
f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
)
return PronunciationAssessmentResult(**final_result)
except Exception as e:
logger.error(f"Assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================
@router.get("/phonemes/{word}")
async def get_word_phonemes(word: str):
"""Get phoneme breakdown for a specific word"""
try:
g2p = SimpleG2P()
phoneme_data = g2p.text_to_phonemes(word)[0]
# Add difficulty analysis for Vietnamese speakers
difficulty_scores = []
comparator = PhonemeComparator()
for phoneme in phoneme_data["phonemes"]:
difficulty = comparator.difficulty_map.get(phoneme, 0.3)
difficulty_scores.append(difficulty)
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
return {
"word": word,
"phonemes": phoneme_data["phonemes"],
"phoneme_string": phoneme_data["phoneme_string"],
"ipa": phoneme_data["ipa"],
"difficulty_score": avg_difficulty,
"difficulty_level": (
"hard"
if avg_difficulty > 0.6
else "medium" if avg_difficulty > 0.4 else "easy"
),
"challenging_phonemes": [
{
"phoneme": p,
"difficulty": comparator.difficulty_map.get(p, 0.3),
"vietnamese_tip": get_vietnamese_tip(p),
}
for p in phoneme_data["phonemes"]
if comparator.difficulty_map.get(p, 0.3) > 0.6
],
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
def get_vietnamese_tip(phoneme: str) -> str:
"""Get Vietnamese pronunciation tip for a phoneme"""
tips = {
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
"ð": "Giống θ nhưng rung dây thanh âm",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng sau răng",
"z": "Như 's' nhưng rung dây thanh",
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
"w": "Tròn môi như 'u'",
}
return tips.get(phoneme, f"Luyện âm {phoneme}")
|