File size: 15,214 Bytes
a4cb278
 
 
 
 
 
 
 
 
 
a546147
c0a7f25
7f15e1c
c0a7f25
 
5a412ce
0f1954e
c0a7f25
 
 
 
a4cb278
a546147
c0a7f25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1954e
 
 
 
61e4b1e
 
 
 
0f1954e
 
 
61e4b1e
 
0f1954e
61e4b1e
0f1954e
 
 
 
 
 
 
61e4b1e
 
 
0f1954e
61e4b1e
0f1954e
 
 
 
 
 
 
 
 
 
61e4b1e
0f1954e
 
 
 
 
61e4b1e
 
0f1954e
 
 
 
61e4b1e
0f1954e
 
 
 
 
 
 
61e4b1e
0f1954e
 
61e4b1e
0f1954e
 
 
 
 
61e4b1e
0f1954e
 
61e4b1e
0f1954e
 
 
61e4b1e
0f1954e
61e4b1e
0f1954e
 
 
 
 
 
 
61e4b1e
0f1954e
 
 
 
 
 
 
61e4b1e
0f1954e
 
61e4b1e
0f1954e
 
 
 
 
61e4b1e
0f1954e
 
61e4b1e
0f1954e
61e4b1e
 
0f1954e
 
 
 
61e4b1e
0f1954e
 
 
c0a7f25
a4cb278
 
 
 
61e4b1e
20c3a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a412ce
20c3a0e
 
 
 
 
 
 
 
 
 
61e4b1e
20c3a0e
 
 
 
 
 
 
 
 
a546147
 
61e4b1e
 
a546147
 
 
61e4b1e
a546147
 
7f15e1c
a546147
 
 
61e4b1e
a546147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f15e1c
a546147
 
 
 
 
 
 
 
 
 
 
5a412ce
a546147
 
 
 
 
 
 
 
 
 
61e4b1e
a546147
 
61e4b1e
 
a546147
7f15e1c
 
61e4b1e
a546147
 
 
 
 
61e4b1e
 
 
 
 
 
a546147
 
61e4b1e
a546147
 
61e4b1e
7f15e1c
 
 
 
61e4b1e
 
 
7f15e1c
 
 
 
 
61e4b1e
7f15e1c
 
 
 
 
 
61e4b1e
7f15e1c
61e4b1e
a546147
61e4b1e
a546147
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
from fastapi import (
    APIRouter,
    status,
    Depends,
    BackgroundTasks,
    HTTPException,
    File,
    UploadFile,
    Form,
)
from fastapi.responses import JSONResponse, StreamingResponse
from src.utils.logger import logger
from src.services.tts_service import tts_service
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional
from src.agents.lesson_practice.flow import lesson_practice_agent
from src.apis.models.lesson_models import Lesson, LessonResponse, LessonDetailResponse
import json
import os
import uuid
from datetime import datetime
import base64
import asyncio

router = APIRouter(prefix="/lesson", tags=["AI"])


class LessonPracticeRequest(BaseModel):
    unit: str = Field(..., description="Unit of the lesson")
    vocabulary: list = Field(..., description="Vocabulary for the lesson")
    key_structures: list = Field(..., description="Key structures for the lesson")
    practice_questions: list = Field(
        ..., description="Practice questions for the lesson"
    )
    student_level: str = Field("beginner", description="Student's level of English")
    query: str = Field(..., description="User query for the lesson")
    session_id: str = Field(..., description="Session ID for the lesson")


# Helper function to load lessons from JSON file
def load_lessons_from_file() -> List[Lesson]:
    """Load lessons from the JSON file"""
    try:
        lessons_file_path = os.path.join(
            os.path.dirname(__file__), "..", "..", "data", "lessons.json"
        )

        if not os.path.exists(lessons_file_path):
            logger.warning(f"Lessons file not found at {lessons_file_path}")
            return []

        with open(lessons_file_path, "r", encoding="utf-8") as file:
            lessons_data = json.load(file)

        # Convert to Lesson objects
        lessons = []
        for lesson_data in lessons_data:
            try:
                lesson = Lesson(**lesson_data)
                lessons.append(lesson)
            except Exception as e:
                logger.error(
                    f"Error parsing lesson {lesson_data.get('id', 'unknown')}: {str(e)}"
                )
                continue

        return lessons
    except Exception as e:
        logger.error(f"Error loading lessons: {str(e)}")
        return []


@router.get("/all", response_model=LessonResponse)
async def get_all_lessons():
    """
    Get all available lessons

    Returns:
        LessonResponse: Contains list of all lessons and total count
    """
    try:
        lessons = load_lessons_from_file()

        return LessonResponse(lessons=lessons, total=len(lessons))
    except Exception as e:
        logger.error(f"Error retrieving lessons: {str(e)}")
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail="Failed to retrieve lessons",
        )


@router.get("/{lesson_id}", response_model=LessonDetailResponse)
async def get_lesson_by_id(lesson_id: str):
    """
    Get a specific lesson by ID

    Args:
        lesson_id (str): The unique identifier of the lesson

    Returns:
        LessonDetailResponse: Contains the lesson details
    """
    try:
        lessons = load_lessons_from_file()

        # Find the lesson with the specified ID
        lesson = next((l for l in lessons if l.id == lesson_id), None)

        if not lesson:
            raise HTTPException(
                status_code=status.HTTP_404_NOT_FOUND,
                detail=f"Lesson with ID '{lesson_id}' not found",
            )

        return LessonDetailResponse(lesson=lesson)
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error retrieving lesson {lesson_id}: {str(e)}")
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail="Failed to retrieve lesson",
        )


@router.get("/search/unit/{unit_name}")
async def search_lessons_by_unit(unit_name: str):
    """
    Search lessons by unit name (case-insensitive partial match)

    Args:
        unit_name (str): Part of the unit name to search for

    Returns:
        LessonResponse: Contains list of matching lessons
    """
    try:
        lessons = load_lessons_from_file()

        # Filter lessons by unit name (case-insensitive partial match)
        matching_lessons = [
            lesson for lesson in lessons if unit_name.lower() in lesson.unit.lower()
        ]

        return LessonResponse(lessons=matching_lessons, total=len(matching_lessons))
    except Exception as e:
        logger.error(f"Error searching lessons by unit '{unit_name}': {str(e)}")
        raise HTTPException(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            detail="Failed to search lessons",
        )


@router.post("/chat")
async def chat(
    session_id: str = Form(
        ..., description="Session ID for tracking user interactions"
    ),
    lesson_data: str = Form(..., description="The lesson data as JSON string"),
    text_message: Optional[str] = Form(None, description="Text message from user"),
    audio_file: Optional[UploadFile] = File(None, description="Audio file from user"),
):
    """Send a message (text or audio) to the lesson practice v2 agent with Practice and Teaching agents"""

    # Validate that at least one input is provided
    if not text_message and not audio_file:
        raise HTTPException(
            status_code=400, detail="Either text_message or audio_file must be provided"
        )

    # Parse lesson data from JSON string
    try:
        lesson_dict = json.loads(lesson_data)
    except json.JSONDecodeError:
        raise HTTPException(status_code=400, detail="Invalid lesson_data JSON format")

    if not lesson_dict:
        raise HTTPException(status_code=400, detail="Lesson data not provided")

    # Prepare message content
    message_content = []

    # Handle text input
    if text_message:
        message_content.append({"type": "text", "text": text_message})

    # Handle audio input
    if audio_file:
        try:
            # Read audio file content
            audio_data = await audio_file.read()

            # Convert to base64
            audio_base64 = base64.b64encode(audio_data).decode("utf-8")

            # Determine mime type based on file extension
            file_extension = (
                audio_file.filename.split(".")[-1].lower()
                if audio_file.filename
                else "wav"
            )
            mime_type_map = {
                "wav": "audio/wav",
                "mp3": "audio/mpeg",
                "ogg": "audio/ogg",
                "webm": "audio/webm",
                "m4a": "audio/mp4",
            }
            mime_type = mime_type_map.get(file_extension, "audio/wav")

            message_content.append(
                {
                    "type": "audio",
                    "source_type": "base64",
                    "data": audio_base64,
                    "mime_type": mime_type,
                }
            )

        except Exception as e:
            logger.error(f"Error processing audio file: {str(e)}")
            raise HTTPException(
                status_code=400, detail=f"Error processing audio file: {str(e)}"
            )

    # Create message in the required format
    message = {"role": "user", "content": message_content}

    try:
        response = await lesson_practice_agent().ainvoke(
            {
                "messages": [message],
                "unit": lesson_dict.get("unit", ""),
                "vocabulary": lesson_dict.get("vocabulary", []),
                "key_structures": lesson_dict.get("key_structures", []),
                "practice_questions": lesson_dict.get("practice_questions", []),
                "student_level": lesson_dict.get("student_level", "beginner"),
            },
            {"configurable": {"thread_id": session_id}},
        )

        # Extract AI response content
        ai_response = response["messages"][-1].content
        logger.info(f"AI response (v2): {ai_response}")

        return JSONResponse(content={"response": ai_response})

    except Exception as e:
        logger.error(f"Error in lesson practice v2: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")


@router.post("/chat/stream", status_code=status.HTTP_200_OK)
async def chat_stream(
    session_id: str = Form(
        ..., description="Session ID for tracking user interactions"
    ),
    lesson_data: str = Form(..., description="The lesson data as JSON string"),
    text_message: Optional[str] = Form(None, description="Text message from user"),
    audio_file: Optional[UploadFile] = File(None, description="Audio file from user"),
    audio: bool = Form(False, description="Whether to return TTS audio response"),
):
    """Send a message (text or audio) to the lesson practice v2 agent with streaming response"""
    logger.info(f"Received streaming lesson practice v2 request: {session_id}")

    # Validate that at least one input is provided
    if not text_message and not audio_file:
        raise HTTPException(
            status_code=400, detail="Either text_message or audio_file must be provided"
        )

    # Parse lesson data from JSON string
    try:
        lesson_dict = json.loads(lesson_data)
    except json.JSONDecodeError:
        raise HTTPException(status_code=400, detail="Invalid lesson_data JSON format")

    if not lesson_dict:
        raise HTTPException(status_code=400, detail="Lesson data not provided")

    # Prepare message content
    message_content = []

    # Handle text input
    if text_message:
        message_content.append({"type": "text", "text": text_message})

    # Handle audio input
    if audio_file:
        try:
            # Read audio file content
            audio_data = await audio_file.read()

            # Convert to base64
            audio_base64 = base64.b64encode(audio_data).decode("utf-8")

            # Determine mime type based on file extension
            file_extension = (
                audio_file.filename.split(".")[-1].lower()
                if audio_file.filename
                else "wav"
            )
            mime_type_map = {
                "wav": "audio/wav",
                "mp3": "audio/mpeg",
                "ogg": "audio/ogg",
                "webm": "audio/webm",
                "m4a": "audio/mp4",
            }
            mime_type = mime_type_map.get(file_extension, "audio/wav")

            message_content.append(
                {
                    "type": "audio",
                    "source_type": "base64",
                    "data": audio_base64,
                    "mime_type": mime_type,
                }
            )

        except Exception as e:
            logger.error(f"Error processing audio file: {str(e)}")
            raise HTTPException(
                status_code=400, detail=f"Error processing audio file: {str(e)}"
            )

    # Create message in the required format
    message = {"role": "user", "content": message_content}

    async def generate_stream():
        """Generator function for streaming responses"""
        accumulated_content = ""
        try:
            input_graph = {
                "messages": [message],
                "unit": lesson_dict.get("unit", ""),
                "vocabulary": lesson_dict.get("vocabulary", []),
                "key_structures": lesson_dict.get("key_structures", []),
                "practice_questions": lesson_dict.get("practice_questions", []),
                "student_level": lesson_dict.get("student_level", "beginner"),
            }
            config = {"configurable": {"thread_id": session_id}}

            async for event in lesson_practice_agent().astream(
                input=input_graph,
                stream_mode=["messages"],
                config=config,
                subgraphs=True,
            ):
                _, event_type, message_chunk = event
                if event_type == "messages":
                    # message_chunk is a tuple, get the first element which is the actual AIMessageChunk
                    if isinstance(message_chunk, tuple) and len(message_chunk) > 0:
                        actual_message = message_chunk[0]
                        content = getattr(actual_message, "content", "")
                    else:
                        actual_message = message_chunk
                        content = getattr(message_chunk, "content", "")

                    if content:
                        # Accumulate content for TTS
                        accumulated_content += content

                        # Create SSE-formatted response
                        response_data = {
                            "type": "message_chunk",
                            "content": content,
                            "metadata": {
                                "agent": getattr(actual_message, "name", "unknown"),
                                "id": getattr(actual_message, "id", ""),
                                "usage_metadata": getattr(
                                    actual_message, "usage_metadata", {}
                                ),
                            },
                        }
                        yield f"data: {json.dumps(response_data)}\n\n"

                        # Small delay to prevent overwhelming the client
                        await asyncio.sleep(0.01)

            # Generate TTS audio if requested
            audio_data = None
            if audio and accumulated_content.strip():
                try:
                    logger.info(
                        f"Generating TTS for lesson v2 content: {len(accumulated_content)} chars"
                    )
                    audio_result = await tts_service.text_to_speech(accumulated_content)
                    if audio_result:
                        audio_data = {
                            "audio_data": audio_result["audio_data"],
                            "mime_type": audio_result["mime_type"],
                            "format": audio_result["format"],
                        }
                        logger.info("Lesson v2 TTS audio generated successfully")
                    else:
                        logger.warning("Lesson v2 TTS generation failed")
                except Exception as tts_error:
                    logger.error(f"Lesson v2 TTS generation error: {str(tts_error)}")

            # Send completion signal with optional audio
            completion_data = {"type": "completion", "content": "", "audio": audio_data}
            yield f"data: {json.dumps(completion_data)}\n\n"

        except Exception as e:
            logger.error(f"Error in streaming lesson practice v2: {str(e)}")
            error_data = {"type": "error", "content": str(e)}
            yield f"data: {json.dumps(error_data)}\n\n"

    return StreamingResponse(
        generate_stream(),
        media_type="text/plain",
        headers={
            "Cache-Control": "no-cache",
            "Connection": "keep-alive",
            "Content-Type": "text/event-stream",
        },
    )