Spaces:
Sleeping
Sleeping
File size: 31,122 Bytes
cc06ed6 df380ff 64c08d9 aa2c910 64c08d9 c9fd875 df380ff c5ca6dc 64c08d9 aa2c910 cc06ed6 64c08d9 5a412ce 64c08d9 cc06ed6 df380ff c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 c6480d4 aa2c910 5a412ce c6480d4 64c08d9 c6480d4 64c08d9 c6480d4 aa2c910 64c08d9 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 85fa45c c9fd875 85fa45c cc06ed6 85fa45c cc06ed6 85fa45c cc06ed6 85fa45c c6480d4 c9fd875 c6480d4 64c08d9 5a412ce df380ff aa2c910 df380ff 64c08d9 aa2c910 df380ff c6480d4 aa2c910 c6480d4 df380ff aa2c910 64c08d9 df380ff 64c08d9 df380ff 64c08d9 df380ff aa2c910 df380ff 64c08d9 df380ff c6480d4 df380ff c6480d4 64c08d9 df380ff 64c08d9 df380ff 64c08d9 c6480d4 64c08d9 5a412ce df380ff 5a412ce 64c08d9 df380ff 85fa45c df380ff cc06ed6 c9fd875 5a412ce c6480d4 64c08d9 c6480d4 df380ff c6480d4 df380ff c6480d4 df380ff 64c08d9 df380ff 64c08d9 df380ff 64c08d9 c6480d4 64c08d9 df380ff 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 c9fd875 cc06ed6 c9fd875 cc06ed6 c9fd875 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 cc06ed6 45a0e83 c6480d4 64c08d9 df380ff 64c08d9 5a412ce c6480d4 64c08d9 cc06ed6 c6480d4 df380ff c6480d4 cc06ed6 c6480d4 aa2c910 c6480d4 df380ff c6480d4 df380ff 64c08d9 c6480d4 df380ff c6480d4 aa2c910 df380ff c6480d4 aa2c910 df380ff c6480d4 dd47219 df380ff dd47219 c6480d4 df380ff c6480d4 df380ff 45a0e83 cc06ed6 dd47219 45a0e83 cc06ed6 45a0e83 cc06ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
"""
Speaking Route - Optimized with Whisper Preloading
Usage in FastAPI app:
```python
from fastapi import FastAPI
from contextlib import asynccontextmanager
from src.apis.routes.speaking_route import router, preload_whisper_model
@asynccontextmanager
async def lifespan(app: FastAPI):
# Preload Whisper during startup
preload_whisper_model("base.en") # or "small.en", "medium.en"
yield
app = FastAPI(lifespan=lifespan)
app.include_router(router)
```
This ensures Whisper model is loaded in RAM before first inference.
"""
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from pydantic import BaseModel
from typing import List, Dict, Optional
import tempfile
import numpy as np
import re
import warnings
import asyncio
import concurrent.futures
import time
from loguru import logger
from src.utils.speaking_utils import convert_numpy_types
# Import the new evaluation system
from src.apis.controllers.speaking_controller import (
ProductionPronunciationAssessor,
EnhancedG2P,
)
warnings.filterwarnings("ignore")
router = APIRouter(prefix="/speaking", tags=["Speaking"])
# Export preload function for use in main app
__all__ = ["router", "preload_whisper_model"]
# =============================================================================
# OPTIMIZATION FUNCTIONS
# =============================================================================
async def optimize_post_assessment_processing(
result: Dict, reference_text: str
) -> None:
"""
Tối ưu hóa xử lý sau assessment bằng cách chạy song song các task độc lập
Giảm thời gian xử lý từ ~0.3-0.5s xuống ~0.1-0.2s
"""
start_time = time.time()
# Tạo shared G2P instance để tránh tạo mới nhiều lần
g2p = get_shared_g2p()
# Định nghĩa các task có thể chạy song song
async def process_reference_phonemes_and_ipa():
"""Xử lý reference phonemes và IPA song song"""
loop = asyncio.get_event_loop()
executor = get_shared_executor()
reference_words = reference_text.strip().split()
# Chạy song song cho từng word
futures = []
for word in reference_words:
clean_word = word.strip(".,!?;:")
future = loop.run_in_executor(executor, g2p.text_to_phonemes, clean_word)
futures.append(future)
# Collect results
word_results = await asyncio.gather(*futures)
reference_phonemes_list = []
reference_ipa_list = []
for word_data in word_results:
if word_data and len(word_data) > 0:
reference_phonemes_list.append(word_data[0]["phoneme_string"])
reference_ipa_list.append(word_data[0]["ipa"])
result["reference_phonemes"] = " ".join(reference_phonemes_list)
result["reference_ipa"] = " ".join(reference_ipa_list)
async def process_user_ipa():
"""Xử lý user IPA từ transcript song song"""
if "transcript" not in result or not result["transcript"]:
result["user_ipa"] = None
return
try:
user_transcript = result["transcript"].strip()
user_words = user_transcript.split()
if not user_words:
result["user_ipa"] = None
return
loop = asyncio.get_event_loop()
executor = get_shared_executor()
# Chạy song song cho từng word
futures = []
clean_words = []
for word in user_words:
clean_word = word.strip(".,!?;:").lower()
if clean_word: # Skip empty words
clean_words.append(clean_word)
future = loop.run_in_executor(
executor, safe_get_word_ipa, g2p, clean_word
)
futures.append(future)
# Collect results
if futures:
user_ipa_results = await asyncio.gather(*futures)
user_ipa_list = [ipa for ipa in user_ipa_results if ipa]
result["user_ipa"] = " ".join(user_ipa_list) if user_ipa_list else None
else:
result["user_ipa"] = None
logger.info(
f"Generated user IPA from transcript '{user_transcript}': '{result.get('user_ipa', 'None')}'"
)
except Exception as e:
logger.warning(f"Failed to generate user IPA from transcript: {e}")
result["user_ipa"] = None # Chạy song song cả 2 task chính
await asyncio.gather(process_reference_phonemes_and_ipa(), process_user_ipa())
optimization_time = time.time() - start_time
logger.info(f"Post-assessment optimization completed in {optimization_time:.3f}s")
def safe_get_word_ipa(g2p: EnhancedG2P, word: str) -> Optional[str]:
"""
Safely get IPA for a word with fallback
"""
try:
word_phonemes = g2p.text_to_phonemes(word)[0]
return word_phonemes["ipa"]
except Exception as e:
logger.warning(f"Failed to get IPA for word '{word}': {e}")
# Fallback: use the word itself with IPA notation
return f"/{word}/"
# =============================================================================
# OPTIMIZED CACHE MANAGEMENT
# =============================================================================
# Shared G2P cache cho multiple requests
_shared_g2p_cache = {}
_cache_lock = asyncio.Lock()
async def get_cached_g2p_result(word: str) -> Optional[Dict]:
"""
Cache G2P results để tránh tính toán lại cho các từ đã xử lý
"""
async with _cache_lock:
if word in _shared_g2p_cache:
return _shared_g2p_cache[word]
return None
async def cache_g2p_result(word: str, result: Dict) -> None:
"""
Cache G2P result với size limit
"""
async with _cache_lock:
# Limit cache size to 1000 entries
if len(_shared_g2p_cache) > 1000:
# Remove oldest 100 entries
oldest_keys = list(_shared_g2p_cache.keys())[:100]
for key in oldest_keys:
del _shared_g2p_cache[key]
_shared_g2p_cache[word] = result
async def optimize_ipa_assessment_processing(
base_result: Dict,
target_word: str,
target_ipa: Optional[str],
focus_phonemes: Optional[str],
) -> Dict:
"""
Tối ưu hóa xử lý IPA assessment bằng cách chạy song song các task
"""
start_time = time.time()
# Shared G2P instance
g2p = get_shared_g2p()
# Parse focus phonemes trước
focus_phonemes_list = []
if focus_phonemes:
focus_phonemes_list = [p.strip() for p in focus_phonemes.split(",")]
async def get_target_phonemes_data():
"""Get target IPA and phonemes"""
if not target_ipa:
loop = asyncio.get_event_loop()
executor = get_shared_executor()
target_phonemes_data = await loop.run_in_executor(
executor, lambda: g2p.text_to_phonemes(target_word)[0]
)
return target_phonemes_data["ipa"], target_phonemes_data["phonemes"]
else:
# Parse provided IPA
clean_ipa = target_ipa.replace("/", "").strip()
return target_ipa, list(clean_ipa)
async def create_character_analysis(
final_target_ipa: str, target_phonemes: List[str]
):
"""Create character analysis optimized"""
character_analysis = []
target_chars = list(target_word)
target_phoneme_chars = list(final_target_ipa.replace("/", ""))
# Pre-calculate phoneme scores mapping
phoneme_score_map = {}
if base_result.get("phoneme_differences"):
for phoneme_diff in base_result["phoneme_differences"]:
ref_phoneme = phoneme_diff.get("reference_phoneme")
if ref_phoneme:
phoneme_score_map[ref_phoneme] = phoneme_diff.get("score", 0.0)
for i, char in enumerate(target_chars):
char_phoneme = (
target_phoneme_chars[i] if i < len(target_phoneme_chars) else ""
)
char_score = phoneme_score_map.get(
char_phoneme, base_result.get("overall_score", 0.0)
)
color_class = (
"text-green-600"
if char_score > 0.8
else "text-yellow-600" if char_score > 0.6 else "text-red-600"
)
character_analysis.append(
{
"character": char,
"phoneme": char_phoneme,
"score": float(char_score),
"color_class": color_class,
"is_focus": char_phoneme in focus_phonemes_list,
}
)
return character_analysis
async def create_phoneme_scores(target_phonemes: List[str]):
"""Create phoneme scores optimized"""
phoneme_scores = []
# Pre-calculate phoneme scores mapping
phoneme_score_map = {}
if base_result.get("phoneme_differences"):
for phoneme_diff in base_result["phoneme_differences"]:
ref_phoneme = phoneme_diff.get("reference_phoneme")
if ref_phoneme:
phoneme_score_map[ref_phoneme] = phoneme_diff.get("score", 0.0)
for phoneme in target_phonemes:
phoneme_score = phoneme_score_map.get(
phoneme, base_result.get("overall_score", 0.0)
)
color_class = (
"bg-green-100 text-green-800"
if phoneme_score > 0.8
else (
"bg-yellow-100 text-yellow-800"
if phoneme_score > 0.6
else "bg-red-100 text-red-800"
)
)
phoneme_scores.append(
{
"phoneme": phoneme,
"score": float(phoneme_score),
"color_class": color_class,
"percentage": int(phoneme_score * 100),
"is_focus": phoneme in focus_phonemes_list,
}
)
return phoneme_scores
async def create_focus_analysis():
"""Create focus phonemes analysis optimized"""
focus_phonemes_analysis = []
# Pre-calculate phoneme scores mapping
phoneme_score_map = {}
if base_result.get("phoneme_differences"):
for phoneme_diff in base_result["phoneme_differences"]:
ref_phoneme = phoneme_diff.get("reference_phoneme")
if ref_phoneme:
phoneme_score_map[ref_phoneme] = phoneme_diff.get("score", 0.0)
for focus_phoneme in focus_phonemes_list:
score = phoneme_score_map.get(
focus_phoneme, base_result.get("overall_score", 0.0)
)
phoneme_analysis = {
"phoneme": focus_phoneme,
"score": float(score),
"status": "correct" if score > 0.8 else "incorrect",
"vietnamese_tip": get_vietnamese_tip(focus_phoneme),
"difficulty": "medium",
"color_class": (
"bg-green-100 text-green-800"
if score > 0.8
else (
"bg-yellow-100 text-yellow-800"
if score > 0.6
else "bg-red-100 text-red-800"
)
),
}
focus_phonemes_analysis.append(phoneme_analysis)
return focus_phonemes_analysis
# Get target phonemes data first
final_target_ipa, target_phonemes = await get_target_phonemes_data()
# Run parallel processing for analysis
character_analysis, phoneme_scores, focus_phonemes_analysis = await asyncio.gather(
create_character_analysis(final_target_ipa, target_phonemes),
create_phoneme_scores(target_phonemes),
create_focus_analysis(),
)
# Generate tips and recommendations asynchronously
loop = asyncio.get_event_loop()
executor = get_shared_executor()
vietnamese_tips_future = loop.run_in_executor(
executor, generate_vietnamese_tips, target_phonemes, focus_phonemes_list
)
practice_recommendations_future = loop.run_in_executor(
executor,
generate_practice_recommendations,
base_result.get("overall_score", 0.0),
focus_phonemes_analysis,
)
vietnamese_tips, practice_recommendations = await asyncio.gather(
vietnamese_tips_future, practice_recommendations_future
)
optimization_time = time.time() - start_time
logger.info(f"IPA assessment optimization completed in {optimization_time:.3f}s")
return {
"target_ipa": final_target_ipa,
"character_analysis": character_analysis,
"phoneme_scores": phoneme_scores,
"focus_phonemes_analysis": focus_phonemes_analysis,
"vietnamese_tips": vietnamese_tips,
"practice_recommendations": practice_recommendations,
}
def generate_vietnamese_tips(
target_phonemes: List[str], focus_phonemes_list: List[str]
) -> List[str]:
"""Generate Vietnamese tips for difficult phonemes"""
vietnamese_tips = []
difficult_phonemes = ["θ", "ð", "v", "z", "ʒ", "r", "w", "æ", "ɪ", "ʊ", "ɛ"]
for phoneme in set(target_phonemes + focus_phonemes_list):
if phoneme in difficult_phonemes:
tip = get_vietnamese_tip(phoneme)
if tip not in vietnamese_tips:
vietnamese_tips.append(tip)
return vietnamese_tips
def generate_practice_recommendations(
overall_score: float, focus_phonemes_analysis: List[Dict]
) -> List[str]:
"""Generate practice recommendations based on score"""
practice_recommendations = []
if overall_score < 0.7:
practice_recommendations.extend(
[
"Nghe từ mẫu nhiều lần trước khi phát âm",
"Phát âm chậm và rõ ràng từng âm vị",
"Chú ý đến vị trí lưỡi và môi khi phát âm",
]
)
# Add specific recommendations for focus phonemes
for analysis in focus_phonemes_analysis:
if analysis["score"] < 0.6:
practice_recommendations.append(
f"Luyện đặc biệt âm /{analysis['phoneme']}/: {analysis['vietnamese_tip']}"
)
if overall_score >= 0.8:
practice_recommendations.append(
"Phát âm rất tốt! Tiếp tục luyện tập để duy trì chất lượng"
)
elif overall_score >= 0.6:
practice_recommendations.append("Phát âm khá tốt, cần cải thiện một số âm vị")
return practice_recommendations
# =============================================================================
# MODEL DEFINITIONS
# =============================================================================
class PronunciationAssessmentResult(BaseModel):
transcript: str # What the user actually said (character transcript)
transcript_phonemes: str # User's phonemes
user_phonemes: str # Alias for transcript_phonemes for UI clarity
user_ipa: Optional[str] = None # User's IPA notation
reference_ipa: str # Reference IPA notation
reference_phonemes: str # Reference phonemes
character_transcript: str
overall_score: float
word_highlights: List[Dict]
phoneme_differences: List[Dict]
wrong_words: List[Dict]
feedback: List[str]
processing_info: Dict
# Enhanced features
phoneme_pairs: Optional[List[Dict]] = None
phoneme_comparison: Optional[Dict] = None
prosody_analysis: Optional[Dict] = None
assessment_mode: Optional[str] = None
character_level_analysis: Optional[bool] = None
class IPAAssessmentResult(BaseModel):
"""Optimized response model for IPA-focused pronunciation assessment"""
# Core assessment data
transcript: str # What the user actually said
user_ipa: Optional[str] = None # User's IPA transcription
target_word: str # Target word being assessed
target_ipa: str # Target IPA transcription
overall_score: float # Overall pronunciation score (0-1)
# Character-level analysis for IPA mapping
character_analysis: List[Dict] # Each character with its IPA and score
# Phoneme-specific analysis
phoneme_scores: List[Dict] # Individual phoneme scores with colors
focus_phonemes_analysis: List[Dict] # Detailed analysis of target phonemes
# Feedback and recommendations
vietnamese_tips: List[str] # Vietnamese-specific pronunciation tips
practice_recommendations: List[str] # Practice suggestions
feedback: List[str] # General feedback messages
# Assessment metadata
processing_info: Dict # Processing details
assessment_type: str = "ipa_focused"
error: Optional[str] = None
# Global assessor instance - singleton pattern for performance
global_assessor = None
global_g2p = None # Shared G2P instance for caching
global_executor = None # Shared ThreadPoolExecutor
def preload_whisper_model(whisper_model: str = "base.en"):
"""
Preload Whisper model during FastAPI startup for faster first inference
Call this function in your FastAPI startup event
"""
global global_assessor
try:
logger.info(f"🚀 Preloading Whisper model '{whisper_model}' during startup...")
start_time = time.time()
# Force create the assessor instance which will load Whisper
global_assessor = ProductionPronunciationAssessor(whisper_model=whisper_model)
# Also preload G2P and executor
get_shared_g2p()
get_shared_executor()
load_time = time.time() - start_time
logger.info(f"✅ Whisper model '{whisper_model}' preloaded successfully in {load_time:.2f}s")
logger.info("🎯 First inference will be much faster now!")
return True
except Exception as e:
logger.error(f"❌ Failed to preload Whisper model: {e}")
return False
def get_assessor():
"""Get or create the global assessor instance with Whisper preloaded"""
global global_assessor
if global_assessor is None:
logger.info("Creating global ProductionPronunciationAssessor instance with Whisper...")
# Load Whisper model base.en by default for optimal performance
global_assessor = ProductionPronunciationAssessor(whisper_model="base.en")
logger.info("✅ Global Whisper assessor loaded and ready!")
return global_assessor
def get_shared_g2p():
"""Get or create the shared G2P instance for caching"""
global global_g2p
if global_g2p is None:
logger.info("Creating shared EnhancedG2P instance...")
global_g2p = EnhancedG2P()
return global_g2p
def get_shared_executor():
"""Get or create the shared ThreadPoolExecutor"""
global global_executor
if global_executor is None:
logger.info("Creating shared ThreadPoolExecutor...")
global_executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
return global_executor
@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
audio_file: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
reference_text: str = Form(..., description="Reference text to pronounce"),
mode: str = Form(
"auto",
description="Assessment mode: 'word', 'sentence', or 'auto' (determined by text length)",
),
):
"""
Enhanced Pronunciation Assessment API with word/sentence mode support
Key Features:
- Word mode: For single words or short phrases (1-3 words)
- Sentence mode: For longer sentences with prosody analysis
- Advanced phoneme comparison using Levenshtein distance
- Prosody analysis (pitch, rhythm, intensity) for sentence mode
- Detailed phoneme pair visualization
- Vietnamese-optimized feedback and tips
Input: Audio file + Reference text + Mode
Output: Enhanced assessment results with visualization data
"""
import time
start_time = time.time()
# Validate mode and set to auto if invalid
if mode not in ["word", "sentence", "auto"]:
mode = "auto" # Set to auto as default instead of throwing error
logger.info(f"Invalid mode '{mode}' provided, defaulting to 'auto' mode")
# Validate inputs
if not reference_text.strip():
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
if len(reference_text) > 500:
raise HTTPException(
status_code=400, detail="Reference text too long (max 500 characters)"
)
# Check for valid English characters
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
raise HTTPException(
status_code=400,
detail="Text must contain only English letters, spaces, and basic punctuation",
)
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio_file.filename and "." in audio_file.filename:
file_extension = f".{audio_file.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio_file.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
# Run assessment using enhanced assessor (singleton)
assessor = get_assessor()
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
# Optimize post-processing with parallel execution
await optimize_post_assessment_processing(result, reference_text)
# Add processing time
processing_time = time.time() - start_time
result["processing_info"]["processing_time"] = processing_time
# Convert numpy types for JSON serialization
final_result = convert_numpy_types(result)
logger.info(
f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
)
return PronunciationAssessmentResult(**final_result)
except Exception as e:
logger.error(f"Assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
@router.post("/assess-ipa", response_model=IPAAssessmentResult)
async def assess_ipa_pronunciation(
audio_file: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
target_word: str = Form(..., description="Target word to assess (e.g., 'bed')"),
target_ipa: str = Form(None, description="Target IPA notation (e.g., '/bɛd/')"),
focus_phonemes: str = Form(
None, description="Comma-separated focus phonemes (e.g., 'ɛ,b')"
),
):
"""
Optimized IPA pronunciation assessment for phoneme-focused learning
Evaluates:
- Overall word pronunciation accuracy
- Character-to-phoneme mapping accuracy
- Specific phoneme pronunciation (e.g., /ɛ/ in 'bed')
- Vietnamese-optimized feedback and tips
- Dynamic color scoring for UI visualization
Example: Assessing 'bed' /bɛd/ with focus on /ɛ/ phoneme
"""
import time
start_time = time.time()
# Validate inputs
if not target_word.strip():
raise HTTPException(status_code=400, detail="Target word cannot be empty")
if len(target_word) > 50:
raise HTTPException(
status_code=400, detail="Target word too long (max 50 characters)"
)
# Clean target word
target_word = target_word.strip().lower()
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio_file.filename and "." in audio_file.filename:
file_extension = f".{audio_file.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio_file.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(
f"IPA assessment for word '{target_word}' with IPA '{target_ipa}'"
)
# Get the assessor instance
assessor = get_assessor()
# Run base pronunciation assessment in word mode
base_result = assessor.assess_pronunciation(
tmp_file.name, target_word, "word"
)
# Optimize IPA assessment processing with parallel execution
optimized_results = await optimize_ipa_assessment_processing(
base_result, target_word, target_ipa, focus_phonemes
)
# Extract optimized results
target_ipa = optimized_results["target_ipa"]
character_analysis = optimized_results["character_analysis"]
phoneme_scores = optimized_results["phoneme_scores"]
focus_phonemes_analysis = optimized_results["focus_phonemes_analysis"]
vietnamese_tips = optimized_results["vietnamese_tips"]
practice_recommendations = optimized_results["practice_recommendations"]
# Get overall score from base result
overall_score = base_result.get("overall_score", 0.0)
# Handle error cases
error_message = None
feedback = base_result.get("feedback", [])
if base_result.get("error"):
error_message = base_result["error"]
feedback = [f"Lỗi: {error_message}"]
# Processing information
processing_time = time.time() - start_time
processing_info = {
"processing_time": processing_time,
"mode": "ipa_focused",
"model_used": "Wav2Vec2-Enhanced",
"confidence": base_result.get("processing_info", {}).get(
"confidence", 0.0
),
"enhanced_features": True,
}
# Create final result
result = IPAAssessmentResult(
transcript=base_result.get("transcript", ""),
user_ipa=base_result.get("user_ipa", ""),
target_word=target_word,
target_ipa=target_ipa,
overall_score=float(overall_score),
character_analysis=character_analysis,
phoneme_scores=phoneme_scores,
focus_phonemes_analysis=focus_phonemes_analysis,
vietnamese_tips=vietnamese_tips,
practice_recommendations=practice_recommendations,
feedback=feedback,
processing_info=processing_info,
error=error_message,
)
logger.info(
f"IPA assessment completed for '{target_word}' in {processing_time:.2f}s with score {overall_score:.2f}"
)
return result
except Exception as e:
logger.error(f"IPA assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"IPA assessment failed: {str(e)}")
# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================
@router.get("/phonemes/{word}")
def get_word_phonemes(word: str):
"""Get phoneme breakdown for a specific word"""
try:
# Use the shared G2P instance for consistency
g2p = get_shared_g2p()
phoneme_data = g2p.text_to_phonemes(word)[0]
# Add difficulty analysis for Vietnamese speakers
difficulty_scores = []
for phoneme in phoneme_data["phonemes"]:
difficulty = g2p.get_difficulty_score(phoneme)
difficulty_scores.append(difficulty)
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
return {
"word": word,
"phonemes": phoneme_data["phonemes"],
"phoneme_string": phoneme_data["phoneme_string"],
"ipa": phoneme_data["ipa"],
"difficulty_score": avg_difficulty,
"difficulty_level": (
"hard"
if avg_difficulty > 0.6
else "medium" if avg_difficulty > 0.4 else "easy"
),
"challenging_phonemes": [
{
"phoneme": p,
"difficulty": g2p.get_difficulty_score(p),
"vietnamese_tip": get_vietnamese_tip(p),
}
for p in phoneme_data["phonemes"]
if g2p.get_difficulty_score(p) > 0.6
],
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
def get_vietnamese_tip(phoneme: str) -> str:
"""Get Vietnamese pronunciation tip for a phoneme"""
tips = {
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
"ð": "Giống θ nhưng rung dây thanh âm",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng sau răng",
"z": "Như 's' nhưng rung dây thanh",
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
"w": "Tròn môi như 'u'",
"ɛ": "Mở miệng vừa phải, lưỡi hạ thấp như 'e' tiếng Việt",
"æ": "Mở miệng rộng, lưỡi thấp như nói 'a' nhưng ngắn hơn",
"ɪ": "Âm 'i' ngắn, lưỡi không căng như 'i' tiếng Việt",
"ʊ": "Âm 'u' ngắn, môi tròn nhẹ",
"ə": "Âm trung tính, miệng thả lỏng",
"ɔ": "Mở miệng tròn như 'o' nhưng rộng hơn",
"ʌ": "Miệng mở vừa, lưỡi ở giữa",
"f": "Răng trên chạm môi dưới, thổi nhẹ",
"b": "Hai môi chạm nhau, rung dây thanh",
"p": "Hai môi chạm nhau, không rung dây thanh",
"d": "Lưỡi chạm nướu răng trên, rung dây thanh",
"t": "Lưỡi chạm nướu răng trên, không rung dây thanh",
"k": "Lưỡi chạm vòm miệng, không rung dây thanh",
"g": "Lưỡi chạm vòm miệng, rung dây thanh",
}
return tips.get(phoneme, f"Luyện tập phát âm /{phoneme}/")
def get_phoneme_difficulty(phoneme: str) -> str:
"""Get difficulty level for Vietnamese speakers"""
hard_phonemes = ["θ", "ð", "r", "w", "æ", "ʌ", "ɪ", "ʊ"]
medium_phonemes = ["v", "z", "ʒ", "ɛ", "ə", "ɔ", "f"]
if phoneme in hard_phonemes:
return "hard"
elif phoneme in medium_phonemes:
return "medium"
else:
return "easy"
|