File size: 37,548 Bytes
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5420f
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5420f
 
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5420f
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cef1d4a
 
df380ff
 
 
cef1d4a
 
df380ff
 
 
cef1d4a
df380ff
 
cef1d4a
 
 
df380ff
cef1d4a
 
 
 
 
 
 
 
 
 
 
 
df380ff
cef1d4a
 
df380ff
cef1d4a
 
 
df380ff
 
 
cef1d4a
df380ff
 
 
 
cef1d4a
df380ff
 
 
 
 
 
 
cef1d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df380ff
 
 
 
 
 
cef1d4a
df380ff
cef1d4a
df380ff
 
 
 
 
 
 
1a5420f
df380ff
 
 
cef1d4a
df380ff
 
cef1d4a
 
 
 
 
 
 
df380ff
 
1a5420f
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5420f
 
 
df380ff
 
 
 
 
 
 
 
 
cef1d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df380ff
cef1d4a
 
 
 
 
 
df380ff
 
cef1d4a
 
 
 
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cef1d4a
 
 
 
 
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cef1d4a
 
df380ff
cef1d4a
 
 
 
 
 
 
 
 
 
df380ff
cef1d4a
df380ff
 
cef1d4a
 
 
 
 
 
 
 
 
 
 
 
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cef1d4a
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5420f
df380ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, APIRouter
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict, Optional
import tempfile
import os
import numpy as np
import librosa
import nltk
import eng_to_ipa as ipa
import torch
import re
from collections import defaultdict
import warnings
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
from loguru import logger
import onnxruntime
import time


# Download required NLTK data
try:
    nltk.download("cmudict", quiet=True)
    from nltk.corpus import cmudict
except:
    print("Warning: NLTK data not available")


class WhisperASR:
    """Whisper ASR for normal mode pronunciation assessment"""

    def __init__(self, model_name: str = "openai/whisper-base.en"):
        """
        Initialize Whisper model for normal mode

        Args:
            model_name: HuggingFace model name for Whisper
        """
        print(f"Loading Whisper model: {model_name}")

        try:
            # Try ONNX first
            self.processor = WhisperProcessor.from_pretrained(model_name)
            self.model = ORTModelForSpeechSeq2Seq.from_pretrained(
                model_name,
                export=True,
                provider="CPUExecutionProvider",
            )
            self.model_type = "ONNX"
            print("Whisper ONNX model loaded successfully")
        except:
            # Fallback to PyTorch
            self.processor = WhisperProcessor.from_pretrained(model_name)
            self.model = WhisperForConditionalGeneration.from_pretrained(model_name)
            self.model_type = "PyTorch"
            print("Whisper PyTorch model loaded successfully")

        self.model_name = model_name
        self.sample_rate = 16000

    def transcribe_to_text(self, audio_path: str) -> Dict:
        """
        Transcribe audio to text using Whisper
        Returns transcript and confidence score
        """
        try:

            start_time = time.time()
            audio, sr = librosa.load(audio_path, sr=self.sample_rate)

            # Process audio
            inputs = self.processor(audio, sampling_rate=16000, return_tensors="pt")

            # Set language to English
            forced_decoder_ids = self.processor.get_decoder_prompt_ids(
                language="en", task="transcribe"
            )

            # Generate transcription
            with torch.no_grad():
                predicted_ids = self.model.generate(
                    inputs["input_features"],
                    forced_decoder_ids=forced_decoder_ids,
                    max_new_tokens=200,
                    do_sample=False,
                )

            # Decode to text
            transcript = self.processor.batch_decode(
                predicted_ids, skip_special_tokens=True
            )[0]
            transcript = transcript.strip().lower()

            # Convert to phoneme representation for comparison
            g2p = SimpleG2P()
            phoneme_representation = g2p.get_reference_phoneme_string(transcript)
            logger.info(f"Whisper transcription time: {time.time() - start_time:.2f}s")
            return {
                "character_transcript": transcript,
                "phoneme_representation": phoneme_representation,
                "confidence_scores": [0.8]
                * len(transcript.split()),  # Simple confidence
            }

        except Exception as e:
            logger.error(f"Whisper transcription error: {e}")
            return {
                "character_transcript": "",
                "phoneme_representation": "",
                "confidence_scores": [],
            }

    def get_model_info(self) -> Dict:
        """Get information about the loaded Whisper model"""
        return {
            "model_name": self.model_name,
            "model_type": self.model_type,
            "sample_rate": self.sample_rate,
        }


class Wav2Vec2CharacterASR:
    """Wav2Vec2 character-level ASR with support for both ONNX and Transformers inference"""

    def __init__(
        self,
        model_name: str = "facebook/wav2vec2-large-960h-lv60-self",
        onnx: bool = False,
        onnx_model_path: str = "./wav2vec2_asr.onnx",
    ):
        """
        Initialize Wav2Vec2 character-level model

        Args:
            model_name: HuggingFace model name
            onnx: If True, use ONNX runtime for inference. If False, use Transformers
            onnx_model_path: Path to the ONNX model file (only used if onnx=True)
        """
        self.model_name = model_name
        self.use_onnx = onnx
        self.onnx_model_path = onnx_model_path
        self.sample_rate = 16000

        print(f"Loading Wav2Vec2 character model: {model_name}")
        print(f"Using {'ONNX' if onnx else 'Transformers'} for inference")

        if self.use_onnx:
            self._init_onnx_model()
        else:
            self._init_transformers_model()

    def _init_onnx_model(self):
        """Initialize ONNX model and processor"""
        # Check if ONNX model exists, if not create it
        if not os.path.exists(self.onnx_model_path):
            print(f"ONNX model not found at {self.onnx_model_path}. Creating it...")
            self._create_onnx_model()

        try:
            # Load ONNX model
            self.session = onnxruntime.InferenceSession(self.onnx_model_path)
            self.input_name = self.session.get_inputs()[0].name
            self.output_name = self.session.get_outputs()[0].name

            # Load processor
            self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)

            print("ONNX Wav2Vec2 character model loaded successfully")

        except Exception as e:
            print(f"Error loading ONNX model: {e}")
            raise

    def _init_transformers_model(self):
        """Initialize Transformers model and processor"""
        try:
            self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
            self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
            self.model.eval()
            print("Wav2Vec2 character model loaded successfully")
        except Exception as e:
            print(f"Error loading model {self.model_name}: {e}")
            # Fallback to base model
            fallback_model = "facebook/wav2vec2-base-960h"
            print(f"Trying fallback model: {fallback_model}")
            try:
                self.processor = Wav2Vec2Processor.from_pretrained(fallback_model)
                self.model = Wav2Vec2ForCTC.from_pretrained(fallback_model)
                self.model.eval()
                self.model_name = fallback_model
                print("Fallback model loaded successfully")
            except Exception as e2:
                raise Exception(
                    f"Failed to load both models. Original error: {e}, Fallback error: {e2}"
                )

    def _create_onnx_model(self):
        """Create ONNX model if it doesn't exist"""
        try:
            # Import the converter from model_convert
            from src.model_convert.wav2vec2onnx import Wav2Vec2ONNXConverter

            print("Creating new ONNX model...")
            converter = Wav2Vec2ONNXConverter(self.model_name)
            created_path = converter.convert_to_onnx(
                onnx_path=self.onnx_model_path,
                input_length=160000,  # 10 seconds
                opset_version=14,
            )
            print(f"✓ ONNX model created successfully at: {created_path}")

        except ImportError as e:
            print(f"Error importing Wav2Vec2ONNXConverter: {e}")
            raise e

    def transcribe_to_characters(self, audio_path: str) -> Dict:
        """
        Transcribe audio directly to characters (no language model correction)
        Returns raw character sequence as produced by the model
        """
        if self.use_onnx:
            return self._transcribe_onnx(audio_path)
        else:
            return self._transcribe_transformers(audio_path)

    def _transcribe_onnx(self, audio_path: str) -> Dict:
        """Transcribe using ONNX runtime"""
        try:
            # Load audio
            start_time = time.time()
            speech, sr = librosa.load(audio_path, sr=self.sample_rate)

            # Prepare input for ONNX
            input_values = self.processor(
                speech, sampling_rate=self.sample_rate, return_tensors="np"
            ).input_values

            # Run ONNX inference
            ort_inputs = {self.input_name: input_values}
            ort_outputs = self.session.run([self.output_name], ort_inputs)
            logits = ort_outputs[0]

            # Get predictions
            predicted_ids = np.argmax(logits, axis=-1)

            # Decode to characters directly
            character_transcript = self.processor.batch_decode(predicted_ids)[0]
            logger.info(f"character_transcript {character_transcript}")

            # Clean up character transcript
            character_transcript = self._clean_character_transcript(
                character_transcript
            )

            # Convert characters to phoneme-like representation
            phoneme_like_transcript = self._characters_to_phoneme_representation(
                character_transcript
            )

            # Calculate confidence scores
            confidence_scores = self._calculate_confidence_scores(logits)
            logger.info(
                f"Wav2Vec2 ONNX transcription time: {time.time() - start_time:.2f}s"
            )

            return {
                "character_transcript": character_transcript,
                "phoneme_representation": phoneme_like_transcript,
                "raw_predicted_ids": predicted_ids[0].tolist(),
                "confidence_scores": confidence_scores[:100],  # Limit for JSON
            }

        except Exception as e:
            print(f"ONNX transcription error: {e}")
            return self._empty_result()

    def _transcribe_transformers(self, audio_path: str) -> Dict:
        """Transcribe using Transformers"""
        try:
            # Load audio
            start_time = time.time()
            speech, sr = librosa.load(audio_path, sr=self.sample_rate)

            # Prepare input
            input_values = self.processor(
                speech, sampling_rate=self.sample_rate, return_tensors="pt"
            ).input_values

            # Get model predictions (no language model involved)
            with torch.no_grad():
                logits = self.model(input_values).logits
                predicted_ids = torch.argmax(logits, dim=-1)

            # Decode to characters directly
            character_transcript = self.processor.batch_decode(predicted_ids)[0]

            # Clean up character transcript
            character_transcript = self._clean_character_transcript(
                character_transcript
            )

            # Convert characters to phoneme-like representation
            phoneme_like_transcript = self._characters_to_phoneme_representation(
                character_transcript
            )

            logger.info(
                f"Transformers transcription time: {time.time() - start_time:.2f}s"
            )

            return {
                "character_transcript": character_transcript,
                "phoneme_representation": phoneme_like_transcript,
                "raw_predicted_ids": predicted_ids[0].tolist(),
                "confidence_scores": torch.softmax(logits, dim=-1)
                .max(dim=-1)[0][0]
                .tolist()[:100],  # Limit for JSON
            }

        except Exception as e:
            print(f"Transformers transcription error: {e}")
            return self._empty_result()

    def _calculate_confidence_scores(self, logits: np.ndarray) -> List[float]:
        """Calculate confidence scores from logits using numpy"""
        # Apply softmax
        exp_logits = np.exp(logits - np.max(logits, axis=-1, keepdims=True))
        softmax_probs = exp_logits / np.sum(exp_logits, axis=-1, keepdims=True)

        # Get max probabilities
        max_probs = np.max(softmax_probs, axis=-1)[0]
        return max_probs.tolist()

    def _clean_character_transcript(self, transcript: str) -> str:
        """Clean and standardize character transcript"""
        # Remove extra spaces and special tokens
        logger.info(f"Raw transcript before cleaning: {transcript}")
        cleaned = re.sub(r"\s+", " ", transcript)
        cleaned = cleaned.strip().lower()
        return cleaned

    def _characters_to_phoneme_representation(self, text: str) -> str:
        """Convert character-based transcript to phoneme-like representation for comparison"""
        if not text:
            return ""

        words = text.split()
        phoneme_words = []
        g2p = SimpleG2P()
        for word in words:
            try:
                if g2p:
                    word_data = g2p.text_to_phonemes(word)[0]
                    phoneme_words.extend(word_data["phonemes"])
                else:
                    phoneme_words.extend(self._simple_letter_to_phoneme(word))
            except:
                # Fallback: simple letter-to-sound mapping
                phoneme_words.extend(self._simple_letter_to_phoneme(word))

        return " ".join(phoneme_words)

    def _simple_letter_to_phoneme(self, word: str) -> List[str]:
        """Simple fallback letter-to-phoneme conversion"""
        letter_to_phoneme = {
            "a": "æ",
            "b": "b",
            "c": "k",
            "d": "d",
            "e": "ɛ",
            "f": "f",
            "g": "ɡ",
            "h": "h",
            "i": "ɪ",
            "j": "dʒ",
            "k": "k",
            "l": "l",
            "m": "m",
            "n": "n",
            "o": "ʌ",
            "p": "p",
            "q": "k",
            "r": "r",
            "s": "s",
            "t": "t",
            "u": "ʌ",
            "v": "v",
            "w": "w",
            "x": "ks",
            "y": "j",
            "z": "z",
        }

        phonemes = []
        for letter in word.lower():
            if letter in letter_to_phoneme:
                phonemes.append(letter_to_phoneme[letter])

        return phonemes

    def _empty_result(self) -> Dict:
        """Return empty result structure"""
        return {
            "character_transcript": "",
            "phoneme_representation": "",
            "raw_predicted_ids": [],
            "confidence_scores": [],
        }

    def get_model_info(self) -> Dict:
        """Get information about the loaded model"""
        info = {
            "model_name": self.model_name,
            "sample_rate": self.sample_rate,
            "inference_method": "ONNX" if self.use_onnx else "Transformers",
        }

        if self.use_onnx:
            info.update(
                {
                    "onnx_model_path": self.onnx_model_path,
                    "input_name": self.input_name,
                    "output_name": self.output_name,
                    "session_providers": self.session.get_providers(),
                }
            )

        return info


class SimpleG2P:
    """Simple Grapheme-to-Phoneme converter for reference text"""

    def __init__(self):
        try:
            self.cmu_dict = cmudict.dict()
        except:
            self.cmu_dict = {}
            print("Warning: CMU dictionary not available")

    def text_to_phonemes(self, text: str) -> List[Dict]:
        """Convert text to phoneme sequence"""
        words = self._clean_text(text).split()
        phoneme_sequence = []

        for word in words:
            word_phonemes = self._get_word_phonemes(word)
            phoneme_sequence.append(
                {
                    "word": word,
                    "phonemes": word_phonemes,
                    "ipa": self._get_ipa(word),
                    "phoneme_string": " ".join(word_phonemes),
                }
            )

        return phoneme_sequence

    def get_reference_phoneme_string(self, text: str) -> str:
        """Get reference phoneme string for comparison"""
        phoneme_sequence = self.text_to_phonemes(text)
        all_phonemes = []

        for word_data in phoneme_sequence:
            all_phonemes.extend(word_data["phonemes"])

        return " ".join(all_phonemes)

    def _clean_text(self, text: str) -> str:
        """Clean text for processing"""
        text = re.sub(r"[^\w\s\']", " ", text)
        text = re.sub(r"\s+", " ", text)
        return text.lower().strip()

    def _get_word_phonemes(self, word: str) -> List[str]:
        """Get phonemes for a word"""
        word_lower = word.lower()

        if word_lower in self.cmu_dict:
            # Remove stress markers and convert to Wav2Vec2 phoneme format
            phonemes = self.cmu_dict[word_lower][0]
            clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
            return self._convert_to_wav2vec_format(clean_phonemes)
        else:
            return self._estimate_phonemes(word)

    def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
        """Convert CMU phonemes to Wav2Vec2 format"""
        # Mapping from CMU to Wav2Vec2/eSpeak phonemes
        cmu_to_espeak = {
            "AA": "ɑ",
            "AE": "æ",
            "AH": "ʌ",
            "AO": "ɔ",
            "AW": "aʊ",
            "AY": "aɪ",
            "EH": "ɛ",
            "ER": "ɝ",
            "EY": "eɪ",
            "IH": "ɪ",
            "IY": "i",
            "OW": "oʊ",
            "OY": "ɔɪ",
            "UH": "ʊ",
            "UW": "u",
            "B": "b",
            "CH": "tʃ",
            "D": "d",
            "DH": "ð",
            "F": "f",
            "G": "ɡ",
            "HH": "h",
            "JH": "dʒ",
            "K": "k",
            "L": "l",
            "M": "m",
            "N": "n",
            "NG": "ŋ",
            "P": "p",
            "R": "r",
            "S": "s",
            "SH": "ʃ",
            "T": "t",
            "TH": "θ",
            "V": "v",
            "W": "w",
            "Y": "j",
            "Z": "z",
            "ZH": "ʒ",
        }

        converted = []
        for phoneme in cmu_phonemes:
            converted_phoneme = cmu_to_espeak.get(phoneme, phoneme.lower())
            converted.append(converted_phoneme)

        return converted

    def _get_ipa(self, word: str) -> str:
        """Get IPA transcription"""
        try:
            return ipa.convert(word)
        except:
            return f"/{word}/"

    def _estimate_phonemes(self, word: str) -> List[str]:
        """Estimate phonemes for unknown words"""
        # Basic phoneme estimation with eSpeak-style output
        phoneme_map = {
            "ch": ["tʃ"],
            "sh": ["ʃ"],
            "th": ["θ"],
            "ph": ["f"],
            "ck": ["k"],
            "ng": ["ŋ"],
            "qu": ["k", "w"],
            "a": ["æ"],
            "e": ["ɛ"],
            "i": ["ɪ"],
            "o": ["ʌ"],
            "u": ["ʌ"],
            "b": ["b"],
            "c": ["k"],
            "d": ["d"],
            "f": ["f"],
            "g": ["ɡ"],
            "h": ["h"],
            "j": ["dʒ"],
            "k": ["k"],
            "l": ["l"],
            "m": ["m"],
            "n": ["n"],
            "p": ["p"],
            "r": ["r"],
            "s": ["s"],
            "t": ["t"],
            "v": ["v"],
            "w": ["w"],
            "x": ["k", "s"],
            "y": ["j"],
            "z": ["z"],
        }

        word = word.lower()
        phonemes = []
        i = 0

        while i < len(word):
            # Check 2-letter combinations first
            if i <= len(word) - 2:
                two_char = word[i : i + 2]
                if two_char in phoneme_map:
                    phonemes.extend(phoneme_map[two_char])
                    i += 2
                    continue

            # Single character
            char = word[i]
            if char in phoneme_map:
                phonemes.extend(phoneme_map[char])

            i += 1

        return phonemes


class PhonemeComparator:
    """Compare reference and learner phoneme sequences"""

    def __init__(self):
        # Vietnamese speakers' common phoneme substitutions
        self.substitution_patterns = {
            "θ": ["f", "s", "t"],  # TH → F, S, T
            "ð": ["d", "z", "v"],  # DH → D, Z, V
            "v": ["w", "f"],  # V → W, F
            "r": ["l"],  # R → L
            "l": ["r"],  # L → R
            "z": ["s"],  # Z → S
            "ʒ": ["ʃ", "z"],  # ZH → SH, Z
            "ŋ": ["n"],  # NG → N
        }

        # Difficulty levels for Vietnamese speakers
        self.difficulty_map = {
            "θ": 0.9,  # th (think)
            "ð": 0.9,  # th (this)
            "v": 0.8,  # v
            "z": 0.8,  # z
            "ʒ": 0.9,  # zh (measure)
            "r": 0.7,  # r
            "l": 0.6,  # l
            "w": 0.5,  # w
            "f": 0.4,  # f
            "s": 0.3,  # s
            "ʃ": 0.5,  # sh
            "tʃ": 0.4,  # ch
            "dʒ": 0.5,  # j
            "ŋ": 0.3,  # ng
        }

    def compare_phoneme_sequences(
        self, reference_phonemes: str, learner_phonemes: str
    ) -> List[Dict]:
        """Compare reference and learner phoneme sequences"""

        # Split phoneme strings
        ref_phones = reference_phonemes.split()
        learner_phones = learner_phonemes.split()

        print(f"Reference phonemes: {ref_phones}")
        print(f"Learner phonemes: {learner_phones}")

        # Simple alignment comparison
        comparisons = []
        max_len = max(len(ref_phones), len(learner_phones))

        for i in range(max_len):
            ref_phoneme = ref_phones[i] if i < len(ref_phones) else ""
            learner_phoneme = learner_phones[i] if i < len(learner_phones) else ""

            if ref_phoneme and learner_phoneme:
                # Both present - check accuracy
                if ref_phoneme == learner_phoneme:
                    status = "correct"
                    score = 1.0
                elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
                    status = "acceptable"
                    score = 0.7
                else:
                    status = "wrong"
                    score = 0.2

            elif ref_phoneme and not learner_phoneme:
                # Missing phoneme
                status = "missing"
                score = 0.0

            elif learner_phoneme and not ref_phoneme:
                # Extra phoneme
                status = "extra"
                score = 0.0
            else:
                continue

            comparison = {
                "position": i,
                "reference_phoneme": ref_phoneme,
                "learner_phoneme": learner_phoneme,
                "status": status,
                "score": score,
                "difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
            }

            comparisons.append(comparison)

        return comparisons

    def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
        """Check if learner phoneme is acceptable substitution for Vietnamese speakers"""
        acceptable = self.substitution_patterns.get(reference, [])
        return learner in acceptable


# =============================================================================
# WORD ANALYZER
# =============================================================================


class WordAnalyzer:
    """Analyze word-level pronunciation accuracy using character-based ASR"""

    def __init__(self):
        self.g2p = SimpleG2P()
        self.comparator = PhonemeComparator()

    def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
        """Analyze word-level pronunciation using phoneme representation from character ASR"""

        # Get reference phonemes by word
        reference_words = self.g2p.text_to_phonemes(reference_text)

        # Get overall phoneme comparison
        reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
        phoneme_comparisons = self.comparator.compare_phoneme_sequences(
            reference_phoneme_string, learner_phonemes
        )

        # Map phonemes back to words
        word_highlights = self._create_word_highlights(
            reference_words, phoneme_comparisons
        )

        # Identify wrong words
        wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)

        return {
            "word_highlights": word_highlights,
            "phoneme_differences": phoneme_comparisons,
            "wrong_words": wrong_words,
        }

    def _create_word_highlights(
        self, reference_words: List[Dict], phoneme_comparisons: List[Dict]
    ) -> List[Dict]:
        """Create word highlighting data"""

        word_highlights = []
        phoneme_index = 0

        for word_data in reference_words:
            word = word_data["word"]
            word_phonemes = word_data["phonemes"]
            num_phonemes = len(word_phonemes)

            # Get phoneme scores for this word
            word_phoneme_scores = []
            for j in range(num_phonemes):
                if phoneme_index + j < len(phoneme_comparisons):
                    comparison = phoneme_comparisons[phoneme_index + j]
                    word_phoneme_scores.append(comparison["score"])

            # Calculate word score
            word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0

            # Create word highlight
            highlight = {
                "word": word,
                "score": float(word_score),
                "status": self._get_word_status(word_score),
                "color": self._get_word_color(word_score),
                "phonemes": word_phonemes,
                "ipa": word_data["ipa"],
                "phoneme_scores": word_phoneme_scores,
                "phoneme_start_index": phoneme_index,
                "phoneme_end_index": phoneme_index + num_phonemes - 1,
            }

            word_highlights.append(highlight)
            phoneme_index += num_phonemes

        return word_highlights

    def _identify_wrong_words(
        self, word_highlights: List[Dict], phoneme_comparisons: List[Dict]
    ) -> List[Dict]:
        """Identify words that were pronounced incorrectly"""

        wrong_words = []

        for word_highlight in word_highlights:
            if word_highlight["score"] < 0.6:  # Threshold for wrong pronunciation

                # Find specific phoneme errors for this word
                start_idx = word_highlight["phoneme_start_index"]
                end_idx = word_highlight["phoneme_end_index"]

                wrong_phonemes = []
                missing_phonemes = []

                for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
                    comparison = phoneme_comparisons[i]

                    if comparison["status"] == "wrong":
                        wrong_phonemes.append(
                            {
                                "expected": comparison["reference_phoneme"],
                                "actual": comparison["learner_phoneme"],
                                "difficulty": comparison["difficulty"],
                            }
                        )
                    elif comparison["status"] == "missing":
                        missing_phonemes.append(
                            {
                                "phoneme": comparison["reference_phoneme"],
                                "difficulty": comparison["difficulty"],
                            }
                        )

                wrong_word = {
                    "word": word_highlight["word"],
                    "score": word_highlight["score"],
                    "expected_phonemes": word_highlight["phonemes"],
                    "ipa": word_highlight["ipa"],
                    "wrong_phonemes": wrong_phonemes,
                    "missing_phonemes": missing_phonemes,
                    "tips": self._get_vietnamese_tips(wrong_phonemes, missing_phonemes),
                }

                wrong_words.append(wrong_word)

        return wrong_words

    def _get_word_status(self, score: float) -> str:
        """Get word status from score"""
        if score >= 0.8:
            return "excellent"
        elif score >= 0.6:
            return "good"
        elif score >= 0.4:
            return "needs_practice"
        else:
            return "poor"

    def _get_word_color(self, score: float) -> str:
        """Get color for word highlighting"""
        if score >= 0.8:
            return "#22c55e"  # Green
        elif score >= 0.6:
            return "#84cc16"  # Light green
        elif score >= 0.4:
            return "#eab308"  # Yellow
        else:
            return "#ef4444"  # Red

    def _get_vietnamese_tips(
        self, wrong_phonemes: List[Dict], missing_phonemes: List[Dict]
    ) -> List[str]:
        """Get Vietnamese-specific pronunciation tips"""

        tips = []

        # Tips for specific Vietnamese pronunciation challenges
        vietnamese_tips = {
            "θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
            "ð": "Giống θ nhưng rung dây thanh âm (this, that)",
            "v": "Chạm môi dưới vào răng trên, không dùng cả hai môi như tiếng Việt",
            "r": "Cuộn lưỡi nhưng không chạm vào vòm miệng, không lăn lưỡi",
            "l": "Đầu lưỡi chạm vào vòm miệng sau răng",
            "z": "Giống âm 's' nhưng có rung dây thanh âm",
            "ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
            "w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
        }

        # Add tips for wrong phonemes
        for wrong in wrong_phonemes:
            expected = wrong["expected"]
            actual = wrong["actual"]

            if expected in vietnamese_tips:
                tips.append(f"Âm '{expected}': {vietnamese_tips[expected]}")
            else:
                tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")

        # Add tips for missing phonemes
        for missing in missing_phonemes:
            phoneme = missing["phoneme"]
            if phoneme in vietnamese_tips:
                tips.append(f"Thiếu âm '{phoneme}': {vietnamese_tips[phoneme]}")

        return tips


class SimpleFeedbackGenerator:
    """Generate simple, actionable feedback in Vietnamese"""

    def generate_feedback(
        self,
        overall_score: float,
        wrong_words: List[Dict],
        phoneme_comparisons: List[Dict],
    ) -> List[str]:
        """Generate Vietnamese feedback"""

        feedback = []

        # Overall feedback in Vietnamese
        if overall_score >= 0.8:
            feedback.append("Phát âm rất tốt! Bạn đã làm xuất sắc.")
        elif overall_score >= 0.6:
            feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
        elif overall_score >= 0.4:
            feedback.append(
                "Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ."
            )
        else:
            feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")

        # Wrong words feedback
        if wrong_words:
            if len(wrong_words) <= 3:
                word_names = [w["word"] for w in wrong_words]
                feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
            else:
                feedback.append(
                    f"Có {len(wrong_words)} từ cần luyện tập. Tập trung vào từng từ một."
                )

        # Most problematic phonemes
        problem_phonemes = defaultdict(int)
        for comparison in phoneme_comparisons:
            if comparison["status"] in ["wrong", "missing"]:
                phoneme = comparison["reference_phoneme"]
                problem_phonemes[phoneme] += 1

        if problem_phonemes:
            most_difficult = sorted(
                problem_phonemes.items(), key=lambda x: x[1], reverse=True
            )
            top_problem = most_difficult[0][0]

            phoneme_tips = {
                "θ": "Lưỡi giữa răng, thổi nhẹ",
                "ð": "Lưỡi giữa răng, rung dây thanh",
                "v": "Môi dưới chạm răng trên",
                "r": "Cuộn lưỡi, không chạm vòm miệng",
                "l": "Lưỡi chạm vòm miệng",
                "z": "Như 's' nhưng rung dây thanh",
            }

            if top_problem in phoneme_tips:
                feedback.append(
                    f"Âm khó nhất '{top_problem}': {phoneme_tips[top_problem]}"
                )

        return feedback


class SimplePronunciationAssessor:
    """Main pronunciation assessor supporting both normal (Whisper) and advanced (Wav2Vec2) modes"""

    def __init__(self):
        print("Initializing Simple Pronunciation Assessor...")
        self.wav2vec2_asr = Wav2Vec2CharacterASR()  # Advanced mode
        self.whisper_asr = WhisperASR()  # Normal mode
        self.word_analyzer = WordAnalyzer()
        self.feedback_generator = SimpleFeedbackGenerator()
        print("Initialization completed")

    def assess_pronunciation(
        self, audio_path: str, reference_text: str, mode: str = "normal"
    ) -> Dict:
        """
        Main assessment function with mode selection

        Args:
            audio_path: Path to audio file
            reference_text: Reference text to compare
            mode: 'normal' (Whisper) or 'advanced' (Wav2Vec2)

        Output: Word highlights + Phoneme differences + Wrong words
        """

        print(f"Starting pronunciation assessment in {mode} mode...")

        # Step 1: Choose ASR model based on mode
        if mode == "advanced":
            print("Step 1: Using Wav2Vec2 character transcription...")
            asr_result = self.wav2vec2_asr.transcribe_to_characters(audio_path)
            model_info = f"Wav2Vec2-Character ({self.wav2vec2_asr.model_name})"
        else:  # normal mode
            print("Step 1: Using Whisper transcription...")
            asr_result = self.whisper_asr.transcribe_to_text(audio_path)
            model_info = f"Whisper ({self.whisper_asr.model_name})"
            print(f"Whisper ASR result: {asr_result}")

        character_transcript = asr_result["character_transcript"]
        phoneme_representation = asr_result["phoneme_representation"]

        print(f"Character transcript: {character_transcript}")
        print(f"Phoneme representation: {phoneme_representation}")

        # Step 2: Word analysis using phoneme representation
        print("Step 2: Analyzing words...")
        analysis_result = self.word_analyzer.analyze_words(
            reference_text, phoneme_representation
        )

        # Step 3: Calculate overall score
        phoneme_comparisons = analysis_result["phoneme_differences"]
        overall_score = self._calculate_overall_score(phoneme_comparisons)

        # Step 4: Generate feedback
        print("Step 3: Generating feedback...")
        feedback = self.feedback_generator.generate_feedback(
            overall_score, analysis_result["wrong_words"], phoneme_comparisons
        )

        result = {
            "transcript": character_transcript,  # What user actually said
            "transcript_phonemes": phoneme_representation,
            "user_phonemes": phoneme_representation,  # Alias for UI clarity
            "character_transcript": character_transcript,
            "overall_score": overall_score,
            "word_highlights": analysis_result["word_highlights"],
            "phoneme_differences": phoneme_comparisons,
            "wrong_words": analysis_result["wrong_words"],
            "feedback": feedback,
            "processing_info": {
                "model_used": model_info,
                "mode": mode,
                "character_based": mode == "advanced",
                "language_model_correction": mode == "normal",
                "raw_output": mode == "advanced",
            },
        }

        print("Assessment completed successfully")
        return result

    def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
        """Calculate overall pronunciation score"""
        if not phoneme_comparisons:
            return 0.0

        total_score = sum(comparison["score"] for comparison in phoneme_comparisons)
        return total_score / len(phoneme_comparisons)


def convert_numpy_types(obj):
    """Convert numpy types to Python native types"""
    if isinstance(obj, np.integer):
        return int(obj)
    elif isinstance(obj, np.floating):
        return float(obj)
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    elif isinstance(obj, dict):
        return {key: convert_numpy_types(value) for key, value in obj.items()}
    elif isinstance(obj, list):
        return [convert_numpy_types(item) for item in obj]
    else:
        return obj