Run_code_api / src /apis /routes /speaking_route.py
ABAO77's picture
Implement enhanced pronunciation assessment system with Wav2Vec2 support
aa2c910
raw
history blame
9.06 kB
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from pydantic import BaseModel
from typing import List, Dict, Optional
import tempfile
import numpy as np
import re
import warnings
from loguru import logger
from src.utils.speaking_utils import convert_numpy_types
# Import the new evaluation system
from evalution import ProductionPronunciationAssessor, EnhancedG2P
warnings.filterwarnings("ignore")
router = APIRouter(prefix="/speaking", tags=["Speaking"])
class PronunciationAssessmentResult(BaseModel):
transcript: str # What the user actually said (character transcript)
transcript_phonemes: str # User's phonemes
user_phonemes: str # Alias for transcript_phonemes for UI clarity
user_ipa: Optional[str] = None # User's IPA notation
reference_ipa: str # Reference IPA notation
reference_phonemes: str # Reference phonemes
character_transcript: str
overall_score: float
word_highlights: List[Dict]
phoneme_differences: List[Dict]
wrong_words: List[Dict]
feedback: List[str]
processing_info: Dict
# Enhanced features
phoneme_pairs: Optional[List[Dict]] = None
phoneme_comparison: Optional[Dict] = None
prosody_analysis: Optional[Dict] = None
assessment_mode: Optional[str] = None
character_level_analysis: Optional[bool] = None
assessor = ProductionPronunciationAssessor()
@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
audio_file: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
reference_text: str = Form(..., description="Reference text to pronounce"),
mode: str = Form(
"auto",
description="Assessment mode: 'word', 'sentence', or 'auto' (determined by text length)",
),
):
"""
Enhanced Pronunciation Assessment API with word/sentence mode support
Key Features:
- Word mode: For single words or short phrases (1-3 words)
- Sentence mode: For longer sentences with prosody analysis
- Advanced phoneme comparison using Levenshtein distance
- Prosody analysis (pitch, rhythm, intensity) for sentence mode
- Detailed phoneme pair visualization
- Vietnamese-optimized feedback and tips
Input: Audio file + Reference text + Mode
Output: Enhanced assessment results with visualization data
"""
import time
start_time = time.time()
# Validate mode and set to auto if invalid
if mode not in ["word", "sentence", "auto"]:
mode = "auto" # Set to auto as default instead of throwing error
logger.info(f"Invalid mode '{mode}' provided, defaulting to 'auto' mode")
# Validate inputs
if not reference_text.strip():
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
if len(reference_text) > 500:
raise HTTPException(
status_code=400, detail="Reference text too long (max 500 characters)"
)
# Check for valid English characters
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
raise HTTPException(
status_code=400,
detail="Text must contain only English letters, spaces, and basic punctuation",
)
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio_file.filename and "." in audio_file.filename:
file_extension = f".{audio_file.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio_file.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
# Run assessment using enhanced assessor
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
# Get reference phonemes and IPA
g2p = EnhancedG2P()
reference_words = reference_text.strip().split()
reference_phonemes_list = []
reference_ipa_list = []
for word in reference_words:
word_phonemes = g2p.text_to_phonemes(word.strip('.,!?;:'))[0]
reference_phonemes_list.append(word_phonemes["phoneme_string"])
reference_ipa_list.append(word_phonemes["ipa"])
# Join phonemes and IPA for the full text
result["reference_phonemes"] = " ".join(reference_phonemes_list)
result["reference_ipa"] = " ".join(reference_ipa_list)
# Create user_ipa from transcript using G2P (same way as reference)
if "transcript" in result and result["transcript"]:
try:
user_transcript = result["transcript"].strip()
user_words = user_transcript.split()
user_ipa_list = []
for word in user_words:
clean_word = word.strip('.,!?;:').lower()
if clean_word: # Skip empty words
try:
word_phonemes = g2p.text_to_phonemes(clean_word)[0]
user_ipa_list.append(word_phonemes["ipa"])
except Exception as e:
logger.warning(f"Failed to get IPA for word '{clean_word}': {e}")
# Fallback: use the word itself
user_ipa_list.append(f"/{clean_word}/")
result["user_ipa"] = " ".join(user_ipa_list) if user_ipa_list else None
logger.info(f"Generated user IPA from transcript '{user_transcript}': '{result['user_ipa']}'")
except Exception as e:
logger.warning(f"Failed to generate user IPA from transcript: {e}")
result["user_ipa"] = None
else:
result["user_ipa"] = None
# Add processing time
processing_time = time.time() - start_time
result["processing_info"]["processing_time"] = processing_time
# Convert numpy types for JSON serialization
final_result = convert_numpy_types(result)
logger.info(
f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
)
return PronunciationAssessmentResult(**final_result)
except Exception as e:
logger.error(f"Assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================
@router.get("/phonemes/{word}")
def get_word_phonemes(word: str):
"""Get phoneme breakdown for a specific word"""
try:
# Use the new EnhancedG2P from evaluation module
from evalution import EnhancedG2P
g2p = EnhancedG2P()
phoneme_data = g2p.text_to_phonemes(word)[0]
# Add difficulty analysis for Vietnamese speakers
difficulty_scores = []
for phoneme in phoneme_data["phonemes"]:
difficulty = g2p.get_difficulty_score(phoneme)
difficulty_scores.append(difficulty)
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
return {
"word": word,
"phonemes": phoneme_data["phonemes"],
"phoneme_string": phoneme_data["phoneme_string"],
"ipa": phoneme_data["ipa"],
"difficulty_score": avg_difficulty,
"difficulty_level": (
"hard"
if avg_difficulty > 0.6
else "medium" if avg_difficulty > 0.4 else "easy"
),
"challenging_phonemes": [
{
"phoneme": p,
"difficulty": g2p.get_difficulty_score(p),
"vietnamese_tip": get_vietnamese_tip(p),
}
for p in phoneme_data["phonemes"]
if g2p.get_difficulty_score(p) > 0.6
],
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
def get_vietnamese_tip(phoneme: str) -> str:
"""Get Vietnamese pronunciation tip for a phoneme"""
tips = {
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
"ð": "Giống θ nhưng rung dây thanh âm",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng sau răng",
"z": "Như 's' nhưng rung dây thanh",
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
"w": "Tròn môi như 'u'",
}
return tips.get(phoneme, f"Luyện âm {phoneme}")