Run_code_api / src /apis /routes /speaking_route.py
ABAO77's picture
feat: refactor Wav2Vec2 character ASR to support quantization and improve model loading
c5ca6dc
raw
history blame
6.35 kB
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from pydantic import BaseModel
from typing import List, Dict
import tempfile
import numpy as np
import re
import warnings
from loguru import logger
from src.apis.controllers.speaking_controller import (
SimpleG2P,
PhonemeComparator,
SimplePronunciationAssessor,
)
from src.utils.speaking_utils import convert_numpy_types
warnings.filterwarnings("ignore")
router = APIRouter(prefix="/pronunciation", tags=["Pronunciation"])
class PronunciationAssessmentResult(BaseModel):
transcript: str # What the user actually said (character transcript)
transcript_phonemes: str # User's phonemes
user_phonemes: str # Alias for transcript_phonemes for UI clarity
character_transcript: str
overall_score: float
word_highlights: List[Dict]
phoneme_differences: List[Dict]
wrong_words: List[Dict]
feedback: List[str]
processing_info: Dict
assessor = SimplePronunciationAssessor()
@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
audio: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
reference_text: str = Form(..., description="Reference text to pronounce"),
mode: str = Form(
"normal",
description="Assessment mode: 'normal' (Whisper) or 'advanced' (Wav2Vec2)",
),
):
"""
Pronunciation Assessment API with mode selection
Key Features:
- Normal mode: Uses Whisper for more accurate transcription with language model
- Advanced mode: Uses facebook/wav2vec2-large-960h-lv60-self for character transcription
- NO language model correction in advanced mode (shows actual pronunciation errors)
- Character-level accuracy converted to phoneme representation
- Vietnamese-optimized feedback and tips
Input: Audio file + Reference text + Mode
Output: Word highlights + Phoneme differences + Wrong words
"""
import time
start_time = time.time()
# Validate mode
if mode not in ["normal", "advanced"]:
raise HTTPException(
status_code=400, detail="Mode must be 'normal' or 'advanced'"
)
# Validate inputs
if not reference_text.strip():
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
if len(reference_text) > 500:
raise HTTPException(
status_code=400, detail="Reference text too long (max 500 characters)"
)
# Check for valid English characters
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
raise HTTPException(
status_code=400,
detail="Text must contain only English letters, spaces, and basic punctuation",
)
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio.filename and "." in audio.filename:
file_extension = f".{audio.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
# Run assessment using selected mode
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
# Add processing time
processing_time = time.time() - start_time
result["processing_info"]["processing_time"] = processing_time
# Convert numpy types for JSON serialization
final_result = convert_numpy_types(result)
logger.info(
f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
)
return PronunciationAssessmentResult(**final_result)
except Exception as e:
logger.error(f"Assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================
@router.get("/phonemes/{word}")
async def get_word_phonemes(word: str):
"""Get phoneme breakdown for a specific word"""
try:
g2p = SimpleG2P()
phoneme_data = g2p.text_to_phonemes(word)[0]
# Add difficulty analysis for Vietnamese speakers
difficulty_scores = []
comparator = PhonemeComparator()
for phoneme in phoneme_data["phonemes"]:
difficulty = comparator.difficulty_map.get(phoneme, 0.3)
difficulty_scores.append(difficulty)
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
return {
"word": word,
"phonemes": phoneme_data["phonemes"],
"phoneme_string": phoneme_data["phoneme_string"],
"ipa": phoneme_data["ipa"],
"difficulty_score": avg_difficulty,
"difficulty_level": (
"hard"
if avg_difficulty > 0.6
else "medium" if avg_difficulty > 0.4 else "easy"
),
"challenging_phonemes": [
{
"phoneme": p,
"difficulty": comparator.difficulty_map.get(p, 0.3),
"vietnamese_tip": get_vietnamese_tip(p),
}
for p in phoneme_data["phonemes"]
if comparator.difficulty_map.get(p, 0.3) > 0.6
],
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
def get_vietnamese_tip(phoneme: str) -> str:
"""Get Vietnamese pronunciation tip for a phoneme"""
tips = {
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
"ð": "Giống θ nhưng rung dây thanh âm",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng sau răng",
"z": "Như 's' nhưng rung dây thanh",
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
"w": "Tròn môi như 'u'",
}
return tips.get(phoneme, f"Luyện âm {phoneme}")