Run_code_api / src /AI_Models /wave2vec_inference.py
ABAO77's picture
Enhance Vietnamese feedback generation with actionable insights and specific improvement strategies. Refine overall feedback based on score ranges, provide detailed guidance for problematic words and phonemes, and suggest clear next steps for users to improve their pronunciation skills.
b9c5d04
raw
history blame
8.94 kB
import torch
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor, Wav2Vec2ForCTC
import onnxruntime as rt
import numpy as np
import librosa
import warnings
import os
warnings.filterwarnings("ignore")
class Wave2Vec2Inference:
def __init__(self, model_name, use_gpu=True):
# Auto-detect device
if use_gpu:
if torch.backends.mps.is_available():
self.device = "mps"
elif torch.cuda.is_available():
self.device = "cuda"
else:
self.device = "cpu"
else:
self.device = "cpu"
print(f"Using device: {self.device}")
# Load model and processor
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = AutoModelForCTC.from_pretrained(model_name)
self.model.to(self.device)
self.model.eval()
# Disable gradients for inference
torch.set_grad_enabled(False)
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
else:
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="pt",
padding=True,
)
# Move to device
input_values = inputs.input_values.to(self.device)
attention_mask = inputs.attention_mask.to(self.device) if "attention_mask" in inputs else None
# Inference
with torch.no_grad():
if attention_mask is not None:
logits = self.model(input_values, attention_mask=attention_mask).logits
else:
logits = self.model(input_values).logits
# Decode
predicted_ids = torch.argmax(logits, dim=-1)
if self.device != "cpu":
predicted_ids = predicted_ids.cpu()
transcription = self.processor.batch_decode(predicted_ids)[0]
return transcription.lower().strip()
def file_to_text(self, filename):
try:
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
return self.buffer_to_text(audio_input)
except Exception as e:
print(f"Error loading audio file {filename}: {e}")
return ""
class Wave2Vec2ONNXInference:
def __init__(self, model_name, onnx_path, use_gpu=True):
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
# Setup ONNX Runtime
options = rt.SessionOptions()
options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
# Choose providers based on GPU availability
providers = []
if use_gpu and rt.get_available_providers():
if 'CUDAExecutionProvider' in rt.get_available_providers():
providers.append('CUDAExecutionProvider')
providers.append('CPUExecutionProvider')
self.model = rt.InferenceSession(onnx_path, options, providers=providers)
self.input_name = self.model.get_inputs()[0].name
print(f"ONNX model loaded with providers: {self.model.get_providers()}")
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
else:
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="np",
padding=True,
)
# ONNX inference
input_values = inputs.input_values.astype(np.float32)
onnx_outputs = self.model.run(None, {self.input_name: input_values})[0]
# Decode
prediction = np.argmax(onnx_outputs, axis=-1)
transcription = self.processor.decode(prediction.squeeze().tolist())
return transcription.lower().strip()
def file_to_text(self, filename):
try:
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
return self.buffer_to_text(audio_input)
except Exception as e:
print(f"Error loading audio file {filename}: {e}")
return ""
def convert_to_onnx(model_id_or_path, onnx_model_name):
"""Convert PyTorch model to ONNX format"""
print(f"Converting {model_id_or_path} to ONNX...")
model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
model.eval()
# Create dummy input
audio_len = 250000
dummy_input = torch.randn(1, audio_len, requires_grad=True)
torch.onnx.export(
model,
dummy_input,
onnx_model_name,
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {1: "audio_len"},
"output": {1: "audio_len"},
},
)
print(f"ONNX model saved to: {onnx_model_name}")
def quantize_onnx_model(onnx_model_path, quantized_model_path):
"""Quantize ONNX model for faster inference"""
print("Starting quantization...")
from onnxruntime.quantization import quantize_dynamic, QuantType
quantize_dynamic(
onnx_model_path,
quantized_model_path,
weight_type=QuantType.QUInt8
)
print(f"Quantized model saved to: {quantized_model_path}")
def export_to_onnx(model_name, quantize=False):
"""
Export model to ONNX format with optional quantization
Args:
model_name: HuggingFace model name
quantize: Whether to also create quantized version
Returns:
tuple: (onnx_path, quantized_path or None)
"""
onnx_filename = f"{model_name.split('/')[-1]}.onnx"
convert_to_onnx(model_name, onnx_filename)
quantized_path = None
if quantize:
quantized_path = onnx_filename.replace('.onnx', '.quantized.onnx')
quantize_onnx_model(onnx_filename, quantized_path)
return onnx_filename, quantized_path
def create_inference(model_name, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False):
"""
Create optimized inference instance
Args:
model_name: HuggingFace model name
use_onnx: Whether to use ONNX runtime
onnx_path: Path to ONNX model file
use_gpu: Whether to use GPU if available
use_onnx_quantize: Whether to use quantized ONNX model
Returns:
Inference instance
"""
if use_onnx:
if not onnx_path or not os.path.exists(onnx_path):
# Convert to ONNX if path not provided or doesn't exist
onnx_filename = f"{model_name.split('/')[-1]}.onnx"
convert_to_onnx(model_name, onnx_filename)
onnx_path = onnx_filename
if use_onnx_quantize:
quantized_path = onnx_path.replace('.onnx', '.quantized.onnx')
if not os.path.exists(quantized_path):
quantize_onnx_model(onnx_path, quantized_path)
onnx_path = quantized_path
print(f"Using ONNX model: {onnx_path}")
return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
else:
print("Using PyTorch model")
return Wave2Vec2Inference(model_name, use_gpu)
if __name__ == "__main__":
import time
model_name = "facebook/wav2vec2-large-960h-lv60-self"
test_file = "test.wav"
if not os.path.exists(test_file):
print(f"Test file {test_file} not found. Please provide a valid audio file.")
exit(1)
# Test different configurations
configs = [
{"use_onnx": False, "use_gpu": True},
{"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False},
{"use_onnx": True, "use_gpu": True, "use_onnx_quantize": True},
]
for config in configs:
print(f"\n=== Testing config: {config} ===")
# Create inference instance
asr = create_inference(model_name, **config)
# Warm up
asr.file_to_text(test_file)
# Test performance
times = []
for i in range(5):
start_time = time.time()
text = asr.file_to_text(test_file)
end_time = time.time()
execution_time = end_time - start_time
times.append(execution_time)
print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")
avg_time = sum(times) / len(times)
print(f"Average time: {avg_time:.3f}s")