Run_code_api / src /apis /routes /speaking_route.py
ABAO77's picture
feat: Implement Whisper model preloading during FastAPI startup for optimized performance
cc06ed6
raw
history blame
31.1 kB
"""
Speaking Route - Optimized with Whisper Preloading
Usage in FastAPI app:
```python
from fastapi import FastAPI
from contextlib import asynccontextmanager
from src.apis.routes.speaking_route import router, preload_whisper_model
@asynccontextmanager
async def lifespan(app: FastAPI):
# Preload Whisper during startup
preload_whisper_model("base.en") # or "small.en", "medium.en"
yield
app = FastAPI(lifespan=lifespan)
app.include_router(router)
```
This ensures Whisper model is loaded in RAM before first inference.
"""
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
from pydantic import BaseModel
from typing import List, Dict, Optional
import tempfile
import numpy as np
import re
import warnings
import asyncio
import concurrent.futures
import time
from loguru import logger
from src.utils.speaking_utils import convert_numpy_types
# Import the new evaluation system
from src.apis.controllers.speaking_controller import (
ProductionPronunciationAssessor,
EnhancedG2P,
)
warnings.filterwarnings("ignore")
router = APIRouter(prefix="/speaking", tags=["Speaking"])
# Export preload function for use in main app
__all__ = ["router", "preload_whisper_model"]
# =============================================================================
# OPTIMIZATION FUNCTIONS
# =============================================================================
async def optimize_post_assessment_processing(
result: Dict, reference_text: str
) -> None:
"""
Tối ưu hóa xử lý sau assessment bằng cách chạy song song các task độc lập
Giảm thời gian xử lý từ ~0.3-0.5s xuống ~0.1-0.2s
"""
start_time = time.time()
# Tạo shared G2P instance để tránh tạo mới nhiều lần
g2p = get_shared_g2p()
# Định nghĩa các task có thể chạy song song
async def process_reference_phonemes_and_ipa():
"""Xử lý reference phonemes và IPA song song"""
loop = asyncio.get_event_loop()
executor = get_shared_executor()
reference_words = reference_text.strip().split()
# Chạy song song cho từng word
futures = []
for word in reference_words:
clean_word = word.strip(".,!?;:")
future = loop.run_in_executor(executor, g2p.text_to_phonemes, clean_word)
futures.append(future)
# Collect results
word_results = await asyncio.gather(*futures)
reference_phonemes_list = []
reference_ipa_list = []
for word_data in word_results:
if word_data and len(word_data) > 0:
reference_phonemes_list.append(word_data[0]["phoneme_string"])
reference_ipa_list.append(word_data[0]["ipa"])
result["reference_phonemes"] = " ".join(reference_phonemes_list)
result["reference_ipa"] = " ".join(reference_ipa_list)
async def process_user_ipa():
"""Xử lý user IPA từ transcript song song"""
if "transcript" not in result or not result["transcript"]:
result["user_ipa"] = None
return
try:
user_transcript = result["transcript"].strip()
user_words = user_transcript.split()
if not user_words:
result["user_ipa"] = None
return
loop = asyncio.get_event_loop()
executor = get_shared_executor()
# Chạy song song cho từng word
futures = []
clean_words = []
for word in user_words:
clean_word = word.strip(".,!?;:").lower()
if clean_word: # Skip empty words
clean_words.append(clean_word)
future = loop.run_in_executor(
executor, safe_get_word_ipa, g2p, clean_word
)
futures.append(future)
# Collect results
if futures:
user_ipa_results = await asyncio.gather(*futures)
user_ipa_list = [ipa for ipa in user_ipa_results if ipa]
result["user_ipa"] = " ".join(user_ipa_list) if user_ipa_list else None
else:
result["user_ipa"] = None
logger.info(
f"Generated user IPA from transcript '{user_transcript}': '{result.get('user_ipa', 'None')}'"
)
except Exception as e:
logger.warning(f"Failed to generate user IPA from transcript: {e}")
result["user_ipa"] = None # Chạy song song cả 2 task chính
await asyncio.gather(process_reference_phonemes_and_ipa(), process_user_ipa())
optimization_time = time.time() - start_time
logger.info(f"Post-assessment optimization completed in {optimization_time:.3f}s")
def safe_get_word_ipa(g2p: EnhancedG2P, word: str) -> Optional[str]:
"""
Safely get IPA for a word with fallback
"""
try:
word_phonemes = g2p.text_to_phonemes(word)[0]
return word_phonemes["ipa"]
except Exception as e:
logger.warning(f"Failed to get IPA for word '{word}': {e}")
# Fallback: use the word itself with IPA notation
return f"/{word}/"
# =============================================================================
# OPTIMIZED CACHE MANAGEMENT
# =============================================================================
# Shared G2P cache cho multiple requests
_shared_g2p_cache = {}
_cache_lock = asyncio.Lock()
async def get_cached_g2p_result(word: str) -> Optional[Dict]:
"""
Cache G2P results để tránh tính toán lại cho các từ đã xử lý
"""
async with _cache_lock:
if word in _shared_g2p_cache:
return _shared_g2p_cache[word]
return None
async def cache_g2p_result(word: str, result: Dict) -> None:
"""
Cache G2P result với size limit
"""
async with _cache_lock:
# Limit cache size to 1000 entries
if len(_shared_g2p_cache) > 1000:
# Remove oldest 100 entries
oldest_keys = list(_shared_g2p_cache.keys())[:100]
for key in oldest_keys:
del _shared_g2p_cache[key]
_shared_g2p_cache[word] = result
async def optimize_ipa_assessment_processing(
base_result: Dict,
target_word: str,
target_ipa: Optional[str],
focus_phonemes: Optional[str],
) -> Dict:
"""
Tối ưu hóa xử lý IPA assessment bằng cách chạy song song các task
"""
start_time = time.time()
# Shared G2P instance
g2p = get_shared_g2p()
# Parse focus phonemes trước
focus_phonemes_list = []
if focus_phonemes:
focus_phonemes_list = [p.strip() for p in focus_phonemes.split(",")]
async def get_target_phonemes_data():
"""Get target IPA and phonemes"""
if not target_ipa:
loop = asyncio.get_event_loop()
executor = get_shared_executor()
target_phonemes_data = await loop.run_in_executor(
executor, lambda: g2p.text_to_phonemes(target_word)[0]
)
return target_phonemes_data["ipa"], target_phonemes_data["phonemes"]
else:
# Parse provided IPA
clean_ipa = target_ipa.replace("/", "").strip()
return target_ipa, list(clean_ipa)
async def create_character_analysis(
final_target_ipa: str, target_phonemes: List[str]
):
"""Create character analysis optimized"""
character_analysis = []
target_chars = list(target_word)
target_phoneme_chars = list(final_target_ipa.replace("/", ""))
# Pre-calculate phoneme scores mapping
phoneme_score_map = {}
if base_result.get("phoneme_differences"):
for phoneme_diff in base_result["phoneme_differences"]:
ref_phoneme = phoneme_diff.get("reference_phoneme")
if ref_phoneme:
phoneme_score_map[ref_phoneme] = phoneme_diff.get("score", 0.0)
for i, char in enumerate(target_chars):
char_phoneme = (
target_phoneme_chars[i] if i < len(target_phoneme_chars) else ""
)
char_score = phoneme_score_map.get(
char_phoneme, base_result.get("overall_score", 0.0)
)
color_class = (
"text-green-600"
if char_score > 0.8
else "text-yellow-600" if char_score > 0.6 else "text-red-600"
)
character_analysis.append(
{
"character": char,
"phoneme": char_phoneme,
"score": float(char_score),
"color_class": color_class,
"is_focus": char_phoneme in focus_phonemes_list,
}
)
return character_analysis
async def create_phoneme_scores(target_phonemes: List[str]):
"""Create phoneme scores optimized"""
phoneme_scores = []
# Pre-calculate phoneme scores mapping
phoneme_score_map = {}
if base_result.get("phoneme_differences"):
for phoneme_diff in base_result["phoneme_differences"]:
ref_phoneme = phoneme_diff.get("reference_phoneme")
if ref_phoneme:
phoneme_score_map[ref_phoneme] = phoneme_diff.get("score", 0.0)
for phoneme in target_phonemes:
phoneme_score = phoneme_score_map.get(
phoneme, base_result.get("overall_score", 0.0)
)
color_class = (
"bg-green-100 text-green-800"
if phoneme_score > 0.8
else (
"bg-yellow-100 text-yellow-800"
if phoneme_score > 0.6
else "bg-red-100 text-red-800"
)
)
phoneme_scores.append(
{
"phoneme": phoneme,
"score": float(phoneme_score),
"color_class": color_class,
"percentage": int(phoneme_score * 100),
"is_focus": phoneme in focus_phonemes_list,
}
)
return phoneme_scores
async def create_focus_analysis():
"""Create focus phonemes analysis optimized"""
focus_phonemes_analysis = []
# Pre-calculate phoneme scores mapping
phoneme_score_map = {}
if base_result.get("phoneme_differences"):
for phoneme_diff in base_result["phoneme_differences"]:
ref_phoneme = phoneme_diff.get("reference_phoneme")
if ref_phoneme:
phoneme_score_map[ref_phoneme] = phoneme_diff.get("score", 0.0)
for focus_phoneme in focus_phonemes_list:
score = phoneme_score_map.get(
focus_phoneme, base_result.get("overall_score", 0.0)
)
phoneme_analysis = {
"phoneme": focus_phoneme,
"score": float(score),
"status": "correct" if score > 0.8 else "incorrect",
"vietnamese_tip": get_vietnamese_tip(focus_phoneme),
"difficulty": "medium",
"color_class": (
"bg-green-100 text-green-800"
if score > 0.8
else (
"bg-yellow-100 text-yellow-800"
if score > 0.6
else "bg-red-100 text-red-800"
)
),
}
focus_phonemes_analysis.append(phoneme_analysis)
return focus_phonemes_analysis
# Get target phonemes data first
final_target_ipa, target_phonemes = await get_target_phonemes_data()
# Run parallel processing for analysis
character_analysis, phoneme_scores, focus_phonemes_analysis = await asyncio.gather(
create_character_analysis(final_target_ipa, target_phonemes),
create_phoneme_scores(target_phonemes),
create_focus_analysis(),
)
# Generate tips and recommendations asynchronously
loop = asyncio.get_event_loop()
executor = get_shared_executor()
vietnamese_tips_future = loop.run_in_executor(
executor, generate_vietnamese_tips, target_phonemes, focus_phonemes_list
)
practice_recommendations_future = loop.run_in_executor(
executor,
generate_practice_recommendations,
base_result.get("overall_score", 0.0),
focus_phonemes_analysis,
)
vietnamese_tips, practice_recommendations = await asyncio.gather(
vietnamese_tips_future, practice_recommendations_future
)
optimization_time = time.time() - start_time
logger.info(f"IPA assessment optimization completed in {optimization_time:.3f}s")
return {
"target_ipa": final_target_ipa,
"character_analysis": character_analysis,
"phoneme_scores": phoneme_scores,
"focus_phonemes_analysis": focus_phonemes_analysis,
"vietnamese_tips": vietnamese_tips,
"practice_recommendations": practice_recommendations,
}
def generate_vietnamese_tips(
target_phonemes: List[str], focus_phonemes_list: List[str]
) -> List[str]:
"""Generate Vietnamese tips for difficult phonemes"""
vietnamese_tips = []
difficult_phonemes = ["θ", "ð", "v", "z", "ʒ", "r", "w", "æ", "ɪ", "ʊ", "ɛ"]
for phoneme in set(target_phonemes + focus_phonemes_list):
if phoneme in difficult_phonemes:
tip = get_vietnamese_tip(phoneme)
if tip not in vietnamese_tips:
vietnamese_tips.append(tip)
return vietnamese_tips
def generate_practice_recommendations(
overall_score: float, focus_phonemes_analysis: List[Dict]
) -> List[str]:
"""Generate practice recommendations based on score"""
practice_recommendations = []
if overall_score < 0.7:
practice_recommendations.extend(
[
"Nghe từ mẫu nhiều lần trước khi phát âm",
"Phát âm chậm và rõ ràng từng âm vị",
"Chú ý đến vị trí lưỡi và môi khi phát âm",
]
)
# Add specific recommendations for focus phonemes
for analysis in focus_phonemes_analysis:
if analysis["score"] < 0.6:
practice_recommendations.append(
f"Luyện đặc biệt âm /{analysis['phoneme']}/: {analysis['vietnamese_tip']}"
)
if overall_score >= 0.8:
practice_recommendations.append(
"Phát âm rất tốt! Tiếp tục luyện tập để duy trì chất lượng"
)
elif overall_score >= 0.6:
practice_recommendations.append("Phát âm khá tốt, cần cải thiện một số âm vị")
return practice_recommendations
# =============================================================================
# MODEL DEFINITIONS
# =============================================================================
class PronunciationAssessmentResult(BaseModel):
transcript: str # What the user actually said (character transcript)
transcript_phonemes: str # User's phonemes
user_phonemes: str # Alias for transcript_phonemes for UI clarity
user_ipa: Optional[str] = None # User's IPA notation
reference_ipa: str # Reference IPA notation
reference_phonemes: str # Reference phonemes
character_transcript: str
overall_score: float
word_highlights: List[Dict]
phoneme_differences: List[Dict]
wrong_words: List[Dict]
feedback: List[str]
processing_info: Dict
# Enhanced features
phoneme_pairs: Optional[List[Dict]] = None
phoneme_comparison: Optional[Dict] = None
prosody_analysis: Optional[Dict] = None
assessment_mode: Optional[str] = None
character_level_analysis: Optional[bool] = None
class IPAAssessmentResult(BaseModel):
"""Optimized response model for IPA-focused pronunciation assessment"""
# Core assessment data
transcript: str # What the user actually said
user_ipa: Optional[str] = None # User's IPA transcription
target_word: str # Target word being assessed
target_ipa: str # Target IPA transcription
overall_score: float # Overall pronunciation score (0-1)
# Character-level analysis for IPA mapping
character_analysis: List[Dict] # Each character with its IPA and score
# Phoneme-specific analysis
phoneme_scores: List[Dict] # Individual phoneme scores with colors
focus_phonemes_analysis: List[Dict] # Detailed analysis of target phonemes
# Feedback and recommendations
vietnamese_tips: List[str] # Vietnamese-specific pronunciation tips
practice_recommendations: List[str] # Practice suggestions
feedback: List[str] # General feedback messages
# Assessment metadata
processing_info: Dict # Processing details
assessment_type: str = "ipa_focused"
error: Optional[str] = None
# Global assessor instance - singleton pattern for performance
global_assessor = None
global_g2p = None # Shared G2P instance for caching
global_executor = None # Shared ThreadPoolExecutor
def preload_whisper_model(whisper_model: str = "base.en"):
"""
Preload Whisper model during FastAPI startup for faster first inference
Call this function in your FastAPI startup event
"""
global global_assessor
try:
logger.info(f"🚀 Preloading Whisper model '{whisper_model}' during startup...")
start_time = time.time()
# Force create the assessor instance which will load Whisper
global_assessor = ProductionPronunciationAssessor(whisper_model=whisper_model)
# Also preload G2P and executor
get_shared_g2p()
get_shared_executor()
load_time = time.time() - start_time
logger.info(f"✅ Whisper model '{whisper_model}' preloaded successfully in {load_time:.2f}s")
logger.info("🎯 First inference will be much faster now!")
return True
except Exception as e:
logger.error(f"❌ Failed to preload Whisper model: {e}")
return False
def get_assessor():
"""Get or create the global assessor instance with Whisper preloaded"""
global global_assessor
if global_assessor is None:
logger.info("Creating global ProductionPronunciationAssessor instance with Whisper...")
# Load Whisper model base.en by default for optimal performance
global_assessor = ProductionPronunciationAssessor(whisper_model="base.en")
logger.info("✅ Global Whisper assessor loaded and ready!")
return global_assessor
def get_shared_g2p():
"""Get or create the shared G2P instance for caching"""
global global_g2p
if global_g2p is None:
logger.info("Creating shared EnhancedG2P instance...")
global_g2p = EnhancedG2P()
return global_g2p
def get_shared_executor():
"""Get or create the shared ThreadPoolExecutor"""
global global_executor
if global_executor is None:
logger.info("Creating shared ThreadPoolExecutor...")
global_executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
return global_executor
@router.post("/assess", response_model=PronunciationAssessmentResult)
async def assess_pronunciation(
audio_file: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
reference_text: str = Form(..., description="Reference text to pronounce"),
mode: str = Form(
"auto",
description="Assessment mode: 'word', 'sentence', or 'auto' (determined by text length)",
),
):
"""
Enhanced Pronunciation Assessment API with word/sentence mode support
Key Features:
- Word mode: For single words or short phrases (1-3 words)
- Sentence mode: For longer sentences with prosody analysis
- Advanced phoneme comparison using Levenshtein distance
- Prosody analysis (pitch, rhythm, intensity) for sentence mode
- Detailed phoneme pair visualization
- Vietnamese-optimized feedback and tips
Input: Audio file + Reference text + Mode
Output: Enhanced assessment results with visualization data
"""
import time
start_time = time.time()
# Validate mode and set to auto if invalid
if mode not in ["word", "sentence", "auto"]:
mode = "auto" # Set to auto as default instead of throwing error
logger.info(f"Invalid mode '{mode}' provided, defaulting to 'auto' mode")
# Validate inputs
if not reference_text.strip():
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
if len(reference_text) > 500:
raise HTTPException(
status_code=400, detail="Reference text too long (max 500 characters)"
)
# Check for valid English characters
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
raise HTTPException(
status_code=400,
detail="Text must contain only English letters, spaces, and basic punctuation",
)
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio_file.filename and "." in audio_file.filename:
file_extension = f".{audio_file.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio_file.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
# Run assessment using enhanced assessor (singleton)
assessor = get_assessor()
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
# Optimize post-processing with parallel execution
await optimize_post_assessment_processing(result, reference_text)
# Add processing time
processing_time = time.time() - start_time
result["processing_info"]["processing_time"] = processing_time
# Convert numpy types for JSON serialization
final_result = convert_numpy_types(result)
logger.info(
f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
)
return PronunciationAssessmentResult(**final_result)
except Exception as e:
logger.error(f"Assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
@router.post("/assess-ipa", response_model=IPAAssessmentResult)
async def assess_ipa_pronunciation(
audio_file: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
target_word: str = Form(..., description="Target word to assess (e.g., 'bed')"),
target_ipa: str = Form(None, description="Target IPA notation (e.g., '/bɛd/')"),
focus_phonemes: str = Form(
None, description="Comma-separated focus phonemes (e.g., 'ɛ,b')"
),
):
"""
Optimized IPA pronunciation assessment for phoneme-focused learning
Evaluates:
- Overall word pronunciation accuracy
- Character-to-phoneme mapping accuracy
- Specific phoneme pronunciation (e.g., /ɛ/ in 'bed')
- Vietnamese-optimized feedback and tips
- Dynamic color scoring for UI visualization
Example: Assessing 'bed' /bɛd/ with focus on /ɛ/ phoneme
"""
import time
start_time = time.time()
# Validate inputs
if not target_word.strip():
raise HTTPException(status_code=400, detail="Target word cannot be empty")
if len(target_word) > 50:
raise HTTPException(
status_code=400, detail="Target word too long (max 50 characters)"
)
# Clean target word
target_word = target_word.strip().lower()
try:
# Save uploaded file temporarily
file_extension = ".wav"
if audio_file.filename and "." in audio_file.filename:
file_extension = f".{audio_file.filename.split('.')[-1]}"
with tempfile.NamedTemporaryFile(
delete=False, suffix=file_extension
) as tmp_file:
content = await audio_file.read()
tmp_file.write(content)
tmp_file.flush()
logger.info(
f"IPA assessment for word '{target_word}' with IPA '{target_ipa}'"
)
# Get the assessor instance
assessor = get_assessor()
# Run base pronunciation assessment in word mode
base_result = assessor.assess_pronunciation(
tmp_file.name, target_word, "word"
)
# Optimize IPA assessment processing with parallel execution
optimized_results = await optimize_ipa_assessment_processing(
base_result, target_word, target_ipa, focus_phonemes
)
# Extract optimized results
target_ipa = optimized_results["target_ipa"]
character_analysis = optimized_results["character_analysis"]
phoneme_scores = optimized_results["phoneme_scores"]
focus_phonemes_analysis = optimized_results["focus_phonemes_analysis"]
vietnamese_tips = optimized_results["vietnamese_tips"]
practice_recommendations = optimized_results["practice_recommendations"]
# Get overall score from base result
overall_score = base_result.get("overall_score", 0.0)
# Handle error cases
error_message = None
feedback = base_result.get("feedback", [])
if base_result.get("error"):
error_message = base_result["error"]
feedback = [f"Lỗi: {error_message}"]
# Processing information
processing_time = time.time() - start_time
processing_info = {
"processing_time": processing_time,
"mode": "ipa_focused",
"model_used": "Wav2Vec2-Enhanced",
"confidence": base_result.get("processing_info", {}).get(
"confidence", 0.0
),
"enhanced_features": True,
}
# Create final result
result = IPAAssessmentResult(
transcript=base_result.get("transcript", ""),
user_ipa=base_result.get("user_ipa", ""),
target_word=target_word,
target_ipa=target_ipa,
overall_score=float(overall_score),
character_analysis=character_analysis,
phoneme_scores=phoneme_scores,
focus_phonemes_analysis=focus_phonemes_analysis,
vietnamese_tips=vietnamese_tips,
practice_recommendations=practice_recommendations,
feedback=feedback,
processing_info=processing_info,
error=error_message,
)
logger.info(
f"IPA assessment completed for '{target_word}' in {processing_time:.2f}s with score {overall_score:.2f}"
)
return result
except Exception as e:
logger.error(f"IPA assessment error: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"IPA assessment failed: {str(e)}")
# =============================================================================
# UTILITY ENDPOINTS
# =============================================================================
@router.get("/phonemes/{word}")
def get_word_phonemes(word: str):
"""Get phoneme breakdown for a specific word"""
try:
# Use the shared G2P instance for consistency
g2p = get_shared_g2p()
phoneme_data = g2p.text_to_phonemes(word)[0]
# Add difficulty analysis for Vietnamese speakers
difficulty_scores = []
for phoneme in phoneme_data["phonemes"]:
difficulty = g2p.get_difficulty_score(phoneme)
difficulty_scores.append(difficulty)
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
return {
"word": word,
"phonemes": phoneme_data["phonemes"],
"phoneme_string": phoneme_data["phoneme_string"],
"ipa": phoneme_data["ipa"],
"difficulty_score": avg_difficulty,
"difficulty_level": (
"hard"
if avg_difficulty > 0.6
else "medium" if avg_difficulty > 0.4 else "easy"
),
"challenging_phonemes": [
{
"phoneme": p,
"difficulty": g2p.get_difficulty_score(p),
"vietnamese_tip": get_vietnamese_tip(p),
}
for p in phoneme_data["phonemes"]
if g2p.get_difficulty_score(p) > 0.6
],
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
def get_vietnamese_tip(phoneme: str) -> str:
"""Get Vietnamese pronunciation tip for a phoneme"""
tips = {
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
"ð": "Giống θ nhưng rung dây thanh âm",
"v": "Môi dưới chạm răng trên",
"r": "Cuộn lưỡi, không chạm vòm miệng",
"l": "Lưỡi chạm vòm miệng sau răng",
"z": "Như 's' nhưng rung dây thanh",
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
"w": "Tròn môi như 'u'",
"ɛ": "Mở miệng vừa phải, lưỡi hạ thấp như 'e' tiếng Việt",
"æ": "Mở miệng rộng, lưỡi thấp như nói 'a' nhưng ngắn hơn",
"ɪ": "Âm 'i' ngắn, lưỡi không căng như 'i' tiếng Việt",
"ʊ": "Âm 'u' ngắn, môi tròn nhẹ",
"ə": "Âm trung tính, miệng thả lỏng",
"ɔ": "Mở miệng tròn như 'o' nhưng rộng hơn",
"ʌ": "Miệng mở vừa, lưỡi ở giữa",
"f": "Răng trên chạm môi dưới, thổi nhẹ",
"b": "Hai môi chạm nhau, rung dây thanh",
"p": "Hai môi chạm nhau, không rung dây thanh",
"d": "Lưỡi chạm nướu răng trên, rung dây thanh",
"t": "Lưỡi chạm nướu răng trên, không rung dây thanh",
"k": "Lưỡi chạm vòm miệng, không rung dây thanh",
"g": "Lưỡi chạm vòm miệng, rung dây thanh",
}
return tips.get(phoneme, f"Luyện tập phát âm /{phoneme}/")
def get_phoneme_difficulty(phoneme: str) -> str:
"""Get difficulty level for Vietnamese speakers"""
hard_phonemes = ["θ", "ð", "r", "w", "æ", "ʌ", "ɪ", "ʊ"]
medium_phonemes = ["v", "z", "ʒ", "ɛ", "ə", "ɔ", "f"]
if phoneme in hard_phonemes:
return "hard"
elif phoneme in medium_phonemes:
return "medium"
else:
return "easy"