Spaces:
Running
Running
| import os | |
| os.environ['HF_HOME'] = '/tmp' | |
| import time | |
| import streamlit as st | |
| import pandas as pd | |
| import io | |
| import plotly.express as px | |
| import zipfile | |
| import json | |
| import string | |
| from cryptography.fernet import Fernet | |
| from streamlit_extras.stylable_container import stylable_container | |
| from typing import Optional | |
| from gliner import GLiNER | |
| from comet_ml import Experiment | |
| # --- Page Configuration and UI Elements --- | |
| st.set_page_config(layout="wide", page_title="Named Entity Recognition App") | |
| st.subheader("DataHarvest", divider="violet") | |
| st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") | |
| st.markdown(':rainbow[**Supported Languages: English**]') | |
| expander = st.expander("**Important notes**") | |
| expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position" | |
| Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags. | |
| **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data. | |
| **Usage Limits:** You can request results unlimited times for one (1) month. | |
| **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. | |
| For any errors or inquiries, please contact us at info@nlpblogs.com""") | |
| with st.sidebar: | |
| st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.") | |
| code = ''' | |
| <iframe | |
| src="https://aiecosystem-dataharvest.hf.space" | |
| frameborder="0" | |
| width="850" | |
| height="450" | |
| ></iframe> | |
| ''' | |
| st.code(code, language="html") | |
| st.text("") | |
| st.text("") | |
| st.divider() | |
| st.subheader("π Ready to build your own AI Web App?", divider="violet") | |
| st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary") | |
| # --- Comet ML Setup --- | |
| COMET_API_KEY = os.environ.get("COMET_API_KEY") | |
| COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") | |
| COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") | |
| comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME) | |
| if not comet_initialized: | |
| st.warning("Comet ML not initialized. Check environment variables.") | |
| # --- Label Definitions --- | |
| labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"] | |
| # Corrected mapping dictionary | |
| # Create a mapping dictionary for labels to categories | |
| category_mapping = { | |
| "People": ["person", "organization", "position"], | |
| "Locations": ["country", "city"], | |
| "Time": ["date", "time"], | |
| "Numbers": ["money", "cardinal"]} | |
| # --- Model Loading --- | |
| def load_ner_model(): | |
| """Loads the GLiNER model and caches it.""" | |
| try: | |
| return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels) | |
| except Exception as e: | |
| st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}") | |
| st.stop() | |
| model = load_ner_model() | |
| # Flatten the mapping to a single dictionary | |
| reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list} | |
| # --- Text Input and Clear Button --- | |
| word_limit = 200 | |
| text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area') | |
| word_count = len(text.split()) | |
| st.markdown(f"**Word count:** {word_count}/{word_limit}") | |
| def clear_text(): | |
| """Clears the text area.""" | |
| st.session_state['my_text_area'] = "" | |
| def remove_punctuation(text): | |
| """Removes punctuation from a string.""" | |
| translator = str.maketrans('', '', string.punctuation) | |
| return text.translate(translator) | |
| st.button("Clear text", on_click=clear_text) | |
| # --- Results Section --- | |
| if st.button("Results"): | |
| if not text.strip(): | |
| st.warning("Please enter some text to extract entities.") | |
| elif word_count > word_limit: | |
| st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.") | |
| else: | |
| start_time = time.time() | |
| # Call the new function to remove punctuation from the input text | |
| cleaned_text = remove_punctuation(text) | |
| with st.spinner("Extracting entities...", show_time=True): | |
| # Use the cleaned text for prediction | |
| entities = model.predict_entities(cleaned_text, labels) | |
| df = pd.DataFrame(entities) | |
| if not df.empty: | |
| df['category'] = df['label'].map(reverse_category_mapping) | |
| if comet_initialized: | |
| experiment = Experiment( | |
| api_key=COMET_API_KEY, | |
| workspace=COMET_WORKSPACE, | |
| project_name=COMET_PROJECT_NAME, | |
| ) | |
| experiment.log_parameter("input_text", text) | |
| experiment.log_table("predicted_entities", df) | |
| st.subheader("Grouped Entities by Category", divider = "violet") | |
| # Create tabs for each category | |
| category_names = sorted(list(category_mapping.keys())) | |
| category_tabs = st.tabs(category_names) | |
| for i, category_name in enumerate(category_names): | |
| with category_tabs[i]: | |
| df_category_filtered = df[df['category'] == category_name] | |
| if not df_category_filtered.empty: | |
| st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True) | |
| else: | |
| st.info(f"No entities found for the '{category_name}' category.") | |
| with st.expander("See Glossary of tags"): | |
| st.write(''' | |
| - **text**: ['entity extracted from your text data'] | |
| - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity'] | |
| - **label**: ['label (tag) assigned to a given extracted entity'] | |
| - **start**: ['index of the start of the corresponding entity'] | |
| - **end**: ['index of the end of the corresponding entity'] | |
| ''') | |
| st.divider() | |
| # Tree map | |
| st.subheader("Tree map", divider = "violet") | |
| fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category') | |
| fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25)) | |
| st.plotly_chart(fig_treemap) | |
| # Pie and Bar charts | |
| grouped_counts = df['category'].value_counts().reset_index() | |
| grouped_counts.columns = ['category', 'count'] | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.subheader("Pie chart", divider = "violet") | |
| fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories') | |
| fig_pie.update_traces(textposition='inside', textinfo='percent+label') | |
| fig_pie.update_layout( | |
| ) | |
| st.plotly_chart(fig_pie) | |
| with col2: | |
| st.subheader("Bar chart", divider = "violet") | |
| fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories') | |
| fig_bar.update_layout( # Changed from fig_pie to fig_bar | |
| ) | |
| st.plotly_chart(fig_bar) | |
| # Most Frequent Entities | |
| st.subheader("Most Frequent Entities", divider="violet") | |
| word_counts = df['text'].value_counts().reset_index() | |
| word_counts.columns = ['Entity', 'Count'] | |
| repeating_entities = word_counts[word_counts['Count'] > 1] | |
| if not repeating_entities.empty: | |
| st.dataframe(repeating_entities, use_container_width=True) | |
| fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity') | |
| fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'}, | |
| ) | |
| st.plotly_chart(fig_repeating_bar) | |
| else: | |
| st.warning("No entities were found that occur more than once.") | |
| # Download Section | |
| st.divider() | |
| dfa = pd.DataFrame( | |
| data={ | |
| 'Column Name': ['text', 'label', 'score', 'start', 'end'], | |
| 'Description': [ | |
| 'entity extracted from your text data', | |
| 'label (tag) assigned to a given extracted entity', | |
| 'accuracy score; how accurately a tag has been assigned to a given entity', | |
| 'index of the start of the corresponding entity', | |
| 'index of the end of the corresponding entity', | |
| ] | |
| } | |
| ) | |
| buf = io.BytesIO() | |
| with zipfile.ZipFile(buf, "w") as myzip: | |
| myzip.writestr("Summary of the results.csv", df.to_csv(index=False)) | |
| myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False)) | |
| with stylable_container( | |
| key="download_button", | |
| css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""", | |
| ): | |
| st.download_button( | |
| label="Download results and glossary (zip)", | |
| data=buf.getvalue(), | |
| file_name="nlpblogs_results.zip", | |
| mime="application/zip", | |
| ) | |
| if comet_initialized: | |
| experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories") | |
| experiment.end() | |
| # Corrected placement for time calculation and display | |
| end_time = time.time() | |
| elapsed_time = end_time - start_time | |
| st.text("") | |
| st.text("") | |
| st.info(f"Results processed in **{elapsed_time:.2f} seconds**.") | |
| else: # If df is empty | |
| st.warning("No entities were found in the provided text.") |