File size: 10,924 Bytes
e342cce
 
 
4b151cd
e342cce
 
 
 
 
6ff1fb4
e342cce
 
 
 
 
e71ed18
793094e
e71ed18
e342cce
 
 
 
 
 
ec30e66
e342cce
6ff1fb4
e342cce
6ff1fb4
e342cce
6ff1fb4
e342cce
5283a70
 
 
e342cce
 
 
 
d81ff71
 
 
 
 
e342cce
d81ff71
e342cce
 
 
 
 
 
90cd943
e71ed18
e342cce
 
 
 
 
 
 
e71ed18
e342cce
ec30e66
e342cce
 
 
 
 
99665c4
5283a70
e71ed18
e342cce
 
 
 
 
ec30e66
e342cce
 
 
 
 
 
e71ed18
e342cce
5283a70
 
 
 
e71ed18
e342cce
 
 
e71ed18
6ff1fb4
 
 
 
e71ed18
6ff1fb4
e71ed18
e342cce
 
 
 
5283a70
 
e342cce
e71ed18
6ff1fb4
 
e342cce
6ff1fb4
 
e342cce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec91119
e342cce
 
 
 
 
 
 
 
 
 
5283a70
e342cce
 
 
 
 
5283a70
e342cce
 
 
 
 
 
 
 
 
 
ec91119
e342cce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
793094e
e71ed18
 
 
 
 
 
e342cce
e71ed18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import json
import string
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment



# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
st.subheader("DataHarvest", divider="violet")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
st.markdown(':rainbow[**Supported Languages: English**]')
expander = st.expander("**Important notes**")
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"

Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.

**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.

**Usage Limits:** You can request results unlimited times for one (1) month.

**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. 

For any errors or inquiries, please contact us at info@nlpblogs.com""")

with st.sidebar:
    st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
    code = '''
    <iframe
	src="https://aiecosystem-dataharvest.hf.space"
	frameborder="0"
	width="850"
	height="450"
    ></iframe>

    '''
    st.code(code, language="html")
    st.text("")
    st.text("")
    st.divider()
    st.subheader("πŸš€ Ready to build your own AI Web App?", divider="violet")
    st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")

# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
    st.warning("Comet ML not initialized. Check environment variables.")

# --- Label Definitions ---
labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
# Corrected mapping dictionary
# Create a mapping dictionary for labels to categories
category_mapping = {
    "People": ["person", "organization", "position"],
    "Locations": ["country", "city"],
    "Time": ["date", "time"],
    "Numbers": ["money", "cardinal"]}

# --- Model Loading ---
@st.cache_resource
def load_ner_model():
    """Loads the GLiNER model and caches it."""
    try:
        return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
    except Exception as e:
        st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
        st.stop()
model = load_ner_model()
# Flatten the mapping to a single dictionary
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}

# --- Text Input and Clear Button ---
word_limit = 200
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
word_count = len(text.split())
st.markdown(f"**Word count:** {word_count}/{word_limit}")

def clear_text():
    """Clears the text area."""
    st.session_state['my_text_area'] = ""

def remove_punctuation(text):
    """Removes punctuation from a string."""
    translator = str.maketrans('', '', string.punctuation)
    return text.translate(translator)

st.button("Clear text", on_click=clear_text)

# --- Results Section ---
if st.button("Results"):
    if not text.strip():
        st.warning("Please enter some text to extract entities.")
    elif word_count > word_limit:
        st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
    else:
        start_time = time.time()
        # Call the new function to remove punctuation from the input text
        cleaned_text = remove_punctuation(text)
        with st.spinner("Extracting entities...", show_time=True):
            # Use the cleaned text for prediction
            entities = model.predict_entities(cleaned_text, labels)
            df = pd.DataFrame(entities)
            if not df.empty:
                df['category'] = df['label'].map(reverse_category_mapping)
                if comet_initialized:
                    experiment = Experiment(
                        api_key=COMET_API_KEY,
                        workspace=COMET_WORKSPACE,
                        project_name=COMET_PROJECT_NAME,
                    )
                    experiment.log_parameter("input_text", text)
                    experiment.log_table("predicted_entities", df)
                st.subheader("Grouped Entities by Category", divider = "violet")
                # Create tabs for each category
                category_names = sorted(list(category_mapping.keys()))
                category_tabs = st.tabs(category_names)
                for i, category_name in enumerate(category_names):
                    with category_tabs[i]:
                        df_category_filtered = df[df['category'] == category_name]
                        if not df_category_filtered.empty:
                            st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
                        else:
                            st.info(f"No entities found for the '{category_name}' category.")
                with st.expander("See Glossary of tags"):
                    st.write('''
                    - **text**: ['entity extracted from your text data']
                    - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
                    - **label**: ['label (tag) assigned to a given extracted entity']
                    - **start**: ['index of the start of the corresponding entity']
                    - **end**: ['index of the end of the corresponding entity']
                    ''')
                st.divider()
                # Tree map
                st.subheader("Tree map", divider = "violet")
                fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
                fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
                st.plotly_chart(fig_treemap)
                # Pie and Bar charts
                grouped_counts = df['category'].value_counts().reset_index()
                grouped_counts.columns = ['category', 'count']
                col1, col2 = st.columns(2)
                with col1:
                    st.subheader("Pie chart", divider = "violet")
                    fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
                    fig_pie.update_traces(textposition='inside', textinfo='percent+label')
                    fig_pie.update_layout(
                    )
                    st.plotly_chart(fig_pie)
                with col2:
                    st.subheader("Bar chart", divider = "violet")
                    fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
                    fig_bar.update_layout(  # Changed from fig_pie to fig_bar
                    )
                    st.plotly_chart(fig_bar)
                # Most Frequent Entities
                st.subheader("Most Frequent Entities", divider="violet")
                word_counts = df['text'].value_counts().reset_index()
                word_counts.columns = ['Entity', 'Count']
                repeating_entities = word_counts[word_counts['Count'] > 1]
                if not repeating_entities.empty:
                    st.dataframe(repeating_entities, use_container_width=True)
                    fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
                    fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
                    )
                    st.plotly_chart(fig_repeating_bar)
                else:
                    st.warning("No entities were found that occur more than once.")
                # Download Section
                st.divider()
                dfa = pd.DataFrame(
                    data={
                        'Column Name': ['text', 'label', 'score', 'start', 'end'],
                        'Description': [
                            'entity extracted from your text data',
                            'label (tag) assigned to a given extracted entity',
                            'accuracy score; how accurately a tag has been assigned to a given entity',
                            'index of the start of the corresponding entity',
                            'index of the end of the corresponding entity',
                        ]
                    }
                )
                buf = io.BytesIO()
                with zipfile.ZipFile(buf, "w") as myzip:
                    myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
                    myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
                with stylable_container(
                    key="download_button",
                    css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
                ):
                    st.download_button(
                        label="Download results and glossary (zip)",
                        data=buf.getvalue(),
                        file_name="nlpblogs_results.zip",
                        mime="application/zip",
                    )
                if comet_initialized:
                    experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
                    experiment.end()
            
                # Corrected placement for time calculation and display
                end_time = time.time()
                elapsed_time = end_time - start_time
                st.text("")
                st.text("")
                st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
            else: # If df is empty
                st.warning("No entities were found in the provided text.")