Spaces:
Running
Running
| import os | |
| os.environ['HF_HOME'] = '/tmp' | |
| import time | |
| import streamlit as st | |
| import streamlit.components.v1 as components | |
| import pandas as pd | |
| import io | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| import numpy as np | |
| import re | |
| import string | |
| import json | |
| # --- PPTX Imports --- | |
| from io import BytesIO | |
| from pptx import Presentation | |
| from pptx.util import Inches, Pt | |
| from pptx.enum.text import MSO_ANCHOR, MSO_AUTO_SIZE | |
| import plotly.io as pio # Required for image export | |
| # --------------------------- | |
| # --- Stable Scikit-learn LDA Imports --- | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.decomposition import LatentDirichletAllocation | |
| # ------------------------------ | |
| from gliner import GLiNER | |
| from streamlit_extras.stylable_container import stylable_container | |
| # Using a try/except for comet_ml import | |
| try: | |
| from comet_ml import Experiment | |
| except ImportError: | |
| class Experiment: | |
| def __init__(self, **kwargs): pass | |
| def log_parameter(self, *args): pass | |
| def log_table(self, *args): pass | |
| def end(self): pass | |
| # --- Model Home Directory (Fix for deployment environments) --- | |
| # Set HF_HOME environment variable to a writable path | |
| os.environ['HF_HOME'] = '/tmp' | |
| # --- Color Map for Highlighting and Network Graph Nodes --- | |
| entity_color_map = { | |
| "person": "#10b981", | |
| "country": "#3b82f6", | |
| "city": "#4ade80", | |
| "organization": "#f59e0b", | |
| "date": "#8b5cf6", | |
| "time": "#ec4899", | |
| "cardinal": "#06b6d4", | |
| "money": "#f43f5e", | |
| "position": "#a855f7", | |
| } | |
| # --- Label Definitions and Category Mapping (Used by the App and PPTX) --- | |
| labels = list(entity_color_map.keys()) | |
| category_mapping = { | |
| "People": ["person", "organization", "position"], | |
| "Locations": ["country", "city"], | |
| "Time": ["date", "time"], | |
| "Numbers": ["money", "cardinal"]} | |
| reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list} | |
| # --- Utility Functions for Analysis and Plotly --- | |
| def extract_label(node_name): | |
| """Extracts the label from a node string like 'Text (Label)'.""" | |
| match = re.search(r'\(([^)]+)\)$', node_name) | |
| return match.group(1) if match else "Unknown" | |
| def remove_trailing_punctuation(text_string): | |
| """Removes trailing punctuation from a string.""" | |
| return text_string.rstrip(string.punctuation) | |
| def highlight_entities(text, df_entities): | |
| """Generates HTML to display text with entities highlighted and colored.""" | |
| if df_entities.empty: | |
| return text | |
| # Sort entities by start index descending to insert highlights without affecting subsequent indices | |
| entities = df_entities.sort_values(by='start', ascending=False).to_dict('records') | |
| highlighted_text = text | |
| for entity in entities: | |
| start = entity['start'] | |
| end = entity['end'] | |
| label = entity['label'] | |
| entity_text = entity['text'] | |
| color = entity_color_map.get(label, '#000000') | |
| # Create a span with background color and tooltip | |
| highlight_html = f'<span style="background-color: {color}; color: white; padding: 2px 4px; border-radius: 3px; cursor: help;" title="{label}">{entity_text}</span>' | |
| # Replace the original text segment with the highlighted HTML | |
| highlighted_text = highlighted_text[:start] + highlight_html + highlighted_text[end:] | |
| # Use a div to mimic the Streamlit input box style for the report | |
| return f'<div style="border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px;">{highlighted_text}</div>' | |
| def perform_topic_modeling(df_entities, num_topics=2, num_top_words=10): | |
| """ | |
| Performs basic Topic Modeling using LDA on the extracted entities, | |
| allowing for n-grams to capture multi-word entities like 'Dr. Emily Carter'. | |
| """ | |
| # 1. Prepare Documents: Use unique entities (they are short, clean documents) | |
| documents = df_entities['text'].unique().tolist() | |
| if len(documents) < 2: | |
| return None | |
| N = min(num_top_words, len(documents)) | |
| try: | |
| # 2. Vectorizer: Use TfidfVectorizer, but allow unigrams, bigrams, and trigrams (ngram_range) | |
| # to capture multi-word entities. We keep stop_words='english' for the *components* of the entity. | |
| tfidf_vectorizer = TfidfVectorizer( | |
| max_df=0.95, | |
| min_df=2, # Only consider words/phrases that appear at least twice to find topics | |
| stop_words='english', | |
| ngram_range=(1, 3) # This is the KEY to capturing "Dr. Emily Carter" as a single token (if it appears enough times) | |
| ) | |
| tfidf = tfidf_vectorizer.fit_transform(documents) | |
| tfidf_feature_names = tfidf_vectorizer.get_feature_names_out() | |
| # Check if the vocabulary is too small after tokenization/ngram generation | |
| if len(tfidf_feature_names) < num_topics: | |
| # Re-run with min_df=1 if vocab is too small | |
| tfidf_vectorizer = TfidfVectorizer( | |
| max_df=1.0, min_df=1, stop_words='english', ngram_range=(1, 3) | |
| ) | |
| tfidf = tfidf_vectorizer.fit_transform(documents) | |
| tfidf_feature_names = tfidf_vectorizer.get_feature_names_out() | |
| if len(tfidf_feature_names) < num_topics: | |
| return None | |
| # 3. LDA Model Fit | |
| lda = LatentDirichletAllocation( | |
| n_components=num_topics, max_iter=5, learning_method='online', | |
| random_state=42, n_jobs=-1 | |
| ) | |
| lda.fit(tfidf) | |
| # 4. Extract Topic Data | |
| topic_data_list = [] | |
| for topic_idx, topic in enumerate(lda.components_): | |
| top_words_indices = topic.argsort()[:-N - 1:-1] | |
| # These top_words will now include phrases like 'emily carter' or 'european space agency' | |
| top_words = [tfidf_feature_names[i] for i in top_words_indices] | |
| word_weights = [topic[i] for i in top_words_indices] | |
| for word, weight in zip(top_words, word_weights): | |
| topic_data_list.append({ | |
| 'Topic_ID': f'Topic #{topic_idx + 1}', | |
| 'Word': word, | |
| 'Weight': weight, | |
| }) | |
| return pd.DataFrame(topic_data_list) | |
| except Exception as e: | |
| # A broader catch for robustness | |
| # st.error(f"Topic modeling failed: {e}") # Keep commented out for cleaner app | |
| return None | |
| def create_topic_word_bubbles(df_topic_data): | |
| """Generates a Plotly Bubble Chart for top words across | |
| all topics, displaying the word directly on the bubble.""" | |
| # Renaming columns to match the output of perform_topic_modeling | |
| df_topic_data = df_topic_data.rename(columns={'Topic_ID': 'topic', | |
| 'Word': 'word', 'Weight': 'weight'}) | |
| df_topic_data['x_pos'] = df_topic_data.index # Use index for x-position | |
| if df_topic_data.empty: | |
| return None | |
| fig = px.scatter( | |
| df_topic_data, | |
| x='x_pos', | |
| y='weight', | |
| size='weight', | |
| color='topic', | |
| # Set text to the word | |
| text='word', | |
| hover_name='word', | |
| size_max=40, | |
| title='Topic Word Weights (Bubble Chart)', | |
| color_discrete_sequence=px.colors.qualitative.Bold, | |
| labels={ | |
| 'x_pos': 'Entity/Word Index', | |
| 'weight': 'Word Weight', | |
| 'topic': 'Topic ID' | |
| }, | |
| custom_data=['word', 'weight', 'topic'] | |
| ) | |
| fig.update_layout( | |
| xaxis_title="Entity/Word", | |
| yaxis_title="Word Weight", | |
| # Hide x-axis labels since words are now labels | |
| xaxis={'tickangle': -45, 'showgrid': False, 'showticklabels': False, 'zeroline': False, 'showline': False}, | |
| yaxis={'showgrid': True}, | |
| showlegend=True, | |
| plot_bgcolor='#f9f9f9', | |
| paper_bgcolor='#f9f9f9', | |
| height=600, | |
| margin=dict(t=50, b=100, l=50, r=10), | |
| ) | |
| # Update traces to show the word text, set the text position, and set text color | |
| fig.update_traces( | |
| # Position the text on top of the bubble | |
| textposition='middle center', | |
| # --- THE KEY FIX IS HERE --- | |
| # Set the text color to white for visibility against dark bubble colors | |
| textfont=dict(color='white', size=10), | |
| # --------------------------- | |
| hovertemplate='<b>%{customdata[0]}</b><br>Weight: %{customdata[1]:.3f}<extra></extra>', | |
| marker=dict(line=dict(width=1, color='DarkSlateGrey')) | |
| ) | |
| return fig | |
| def generate_network_graph(df, raw_text): | |
| """ | |
| Generates a network graph visualization (Node Plot) with edges | |
| based on entity co-occurrence in sentences. (Content omitted for brevity but assumed to be here). | |
| """ | |
| # Using the existing generate_network_graph logic from previous context... | |
| entity_counts = df['text'].value_counts().reset_index() | |
| entity_counts.columns = ['text', 'frequency'] | |
| unique_entities = df.drop_duplicates(subset=['text', 'label']).merge(entity_counts, on='text') | |
| if unique_entities.shape[0] < 2: | |
| return go.Figure().update_layout(title="Not enough unique entities for a meaningful graph.") | |
| num_nodes = len(unique_entities) | |
| thetas = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False) | |
| radius = 10 | |
| unique_entities['x'] = radius * np.cos(thetas) + np.random.normal(0, 0.5, num_nodes) | |
| unique_entities['y'] = radius * np.sin(thetas) + np.random.normal(0, 0.5, num_nodes) | |
| pos_map = unique_entities.set_index('text')[['x', 'y']].to_dict('index') | |
| edges = set() | |
| sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s', raw_text) | |
| for sentence in sentences: | |
| entities_in_sentence = [] | |
| for entity_text in unique_entities['text'].unique(): | |
| if entity_text.lower() in sentence.lower(): | |
| entities_in_sentence.append(entity_text) | |
| unique_entities_in_sentence = list(set(entities_in_sentence)) | |
| for i in range(len(unique_entities_in_sentence)): | |
| for j in range(i + 1, len(unique_entities_in_sentence)): | |
| node1 = unique_entities_in_sentence[i] | |
| node2 = unique_entities_in_sentence[j] | |
| edge_tuple = tuple(sorted((node1, node2))) | |
| edges.add(edge_tuple) | |
| edge_x = [] | |
| edge_y = [] | |
| for edge in edges: | |
| n1, n2 = edge | |
| if n1 in pos_map and n2 in pos_map: | |
| edge_x.extend([pos_map[n1]['x'], pos_map[n2]['x'], None]) | |
| edge_y.extend([pos_map[n1]['y'], pos_map[n2]['y'], None]) | |
| fig = go.Figure() | |
| edge_trace = go.Scatter( | |
| x=edge_x, y=edge_y, | |
| line=dict(width=0.5, color='#888'), | |
| hoverinfo='none', | |
| mode='lines', | |
| name='Co-occurrence Edges', | |
| showlegend=False | |
| ) | |
| fig.add_trace(edge_trace) | |
| fig.add_trace(go.Scatter( | |
| x=unique_entities['x'], | |
| y=unique_entities['y'], | |
| mode='markers+text', | |
| name='Entities', | |
| text=unique_entities['text'], | |
| textposition="top center", | |
| showlegend=False, | |
| marker=dict( | |
| size=unique_entities['frequency'] * 5 + 10, | |
| color=[entity_color_map.get(label, '#cccccc') for label in unique_entities['label']], | |
| line_width=1, | |
| line_color='black', | |
| opacity=0.9 | |
| ), | |
| textfont=dict(size=10), | |
| customdata=unique_entities[['label', 'score', 'frequency']], | |
| hovertemplate=( | |
| "<b>%{text}</b><br>" + | |
| "Label: %{customdata[0]}<br>" + | |
| "Score: %{customdata[1]:.2f}<br>" + | |
| "Frequency: %{customdata[2]}<extra></extra>" | |
| ) | |
| )) | |
| legend_traces = [] | |
| seen_labels = set() | |
| for index, row in unique_entities.iterrows(): | |
| label = row['label'] | |
| if label not in seen_labels: | |
| seen_labels.add(label) | |
| color = entity_color_map.get(label, '#cccccc') | |
| legend_traces.append(go.Scatter( | |
| x=[None], y=[None], mode='markers', marker=dict(size=10, color=color), name=f"{label.capitalize()}", showlegend=True | |
| )) | |
| for trace in legend_traces: | |
| fig.add_trace(trace) | |
| fig.update_layout( | |
| title='Entity Co-occurrence Network (Edges = Same Sentence)', | |
| showlegend=True, | |
| hovermode='closest', | |
| xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]), | |
| yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]), | |
| plot_bgcolor='#f9f9f9', | |
| paper_bgcolor='#f9f9f9', | |
| margin=dict(t=50, b=10, l=10, r=10), | |
| height=600 | |
| ) | |
| return fig | |
| # --- NEW CSV GENERATION FUNCTION --- | |
| def generate_entity_csv(df): | |
| """ | |
| Generates a CSV file of the extracted entities in an in-memory buffer, | |
| including text, label, category, score, start, and end indices. | |
| """ | |
| csv_buffer = BytesIO() | |
| # Select desired columns and write to buffer | |
| df_export = df[['text', 'label', 'category', 'score', 'start', 'end']] | |
| csv_buffer.write(df_export.to_csv(index=False).encode('utf-8')) | |
| csv_buffer.seek(0) | |
| return csv_buffer | |
| # ----------------------------------- | |
| # --- Existing App Functionality (HTML) --- | |
| def generate_html_report(df, text_input, elapsed_time, df_topic_data): | |
| """ | |
| Generates a full HTML report containing all analysis results and visualizations. | |
| (Content omitted for brevity but assumed to be here). | |
| """ | |
| # 1. Generate Visualizations (Plotly HTML) | |
| # 1a. Treemap | |
| fig_treemap = px.treemap( | |
| df, | |
| path=[px.Constant("All Entities"), 'category', 'label', 'text'], | |
| values='score', | |
| color='category', | |
| title="Entity Distribution by Category and Label", | |
| color_discrete_sequence=px.colors.qualitative.Dark24 | |
| ) | |
| fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25)) | |
| treemap_html = fig_treemap.to_html(full_html=False, include_plotlyjs='cdn') | |
| # 1b. Pie Chart | |
| grouped_counts = df['category'].value_counts().reset_index() | |
| grouped_counts.columns = ['Category', 'Count'] | |
| # Changed color_discrete_sequence from sequential.RdBu (which has reds) to sequential.Cividis | |
| fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=px.colors.sequential.Cividis) | |
| fig_pie.update_layout(margin=dict(t=50, b=10)) | |
| pie_html = fig_pie.to_html(full_html=False, include_plotlyjs='cdn') | |
| # 1c. Bar Chart (Category Count) | |
| fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=px.colors.qualitative.Pastel) | |
| fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100)) | |
| bar_category_html = fig_bar_category.to_html(full_html=False,include_plotlyjs='cdn') | |
| # 1d. Bar Chart (Most Frequent Entities) | |
| word_counts = df['text'].value_counts().reset_index() | |
| word_counts.columns = ['Entity', 'Count'] | |
| repeating_entities = word_counts[word_counts['Count'] > 1].head(10) | |
| bar_freq_html = '<p>No entities appear more than once in the text for visualization.</p>' | |
| if not repeating_entities.empty: | |
| # Changed color_discrete_sequence from sequential.Plasma (which has pink/magenta) to sequential.Viridis | |
| fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis) | |
| fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100)) | |
| bar_freq_html = fig_bar_freq.to_html(full_html=False, include_plotlyjs='cdn') | |
| # 1e. Network Graph HTML | |
| network_fig = generate_network_graph(df, text_input) | |
| network_html = network_fig.to_html(full_html=False, include_plotlyjs='cdn') | |
| # 1f. Topic Charts HTML | |
| topic_charts_html = '<h3>Topic Word Weights (Bubble Chart)</h3>' | |
| if df_topic_data is not None and not df_topic_data.empty: | |
| bubble_figure = create_topic_word_bubbles(df_topic_data) | |
| if bubble_figure: | |
| topic_charts_html += f'<div class="chart-box">{bubble_figure.to_html(full_html=False, include_plotlyjs="cdn", config={"responsive": True})}</div>' | |
| else: | |
| topic_charts_html += '<p style="color: red;">Error: Topic modeling data was available but visualization failed.</p>' | |
| else: | |
| topic_charts_html += '<div class="chart-box" style="text-align: center; padding: 50px; background-color: #fff; border: 1px dashed #888888;">' # Changed border color | |
| topic_charts_html += '<p><strong>Topic Modeling requires more unique input.</strong></p>' | |
| topic_charts_html += '<p>Please enter text containing at least two unique entities to generate the Topic Bubble Chart.</p>' | |
| topic_charts_html += '</div>' | |
| # 2. Get Highlighted Text | |
| highlighted_text_html = highlight_entities(text_input, df).replace("div style", "div class='highlighted-text' style") | |
| # 3. Entity Tables (Pandas to HTML) | |
| entity_table_html = df[['text', 'label', 'score', 'start', 'end', 'category']].to_html( | |
| classes='table table-striped', | |
| index=False | |
| ) | |
| # 4. Construct the Final HTML | |
| html_content = f"""<!DOCTYPE html><html lang="en"><head> | |
| <meta charset="UTF-8"> | |
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
| <title>Entity and Topic Analysis Report</title> | |
| <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> | |
| <style> | |
| body {{ font-family: 'Inter', sans-serif; margin: 0; padding: 20px; background-color: #f4f4f9; color: #333; }} | |
| .container {{ max-width: 1200px; margin: 0 auto; background-color: #ffffff; padding: 30px; border-radius: 12px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); }} | |
| h1 {{ color: #007bff; border-bottom: 3px solid #007bff; padding-bottom: 10px; margin-top: 0; }} | |
| h2 {{ color: #007bff; margin-top: 30px; border-bottom: 1px solid #ddd; padding-bottom: 5px; }} | |
| h3 {{ color: #555; margin-top: 20px; }} | |
| .metadata {{ background-color: #e6f0ff; padding: 15px; border-radius: 8px; margin-bottom: 20px; font-size: 0.9em; }} | |
| .chart-box {{ background-color: #f9f9f9; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); min-width: 0; margin-bottom: 20px; }} | |
| table {{ width: 100%; border-collapse: collapse; margin-top: 15px; }} | |
| table th, table td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }} | |
| table th {{ background-color: #f0f0f0; }} | |
| .highlighted-text {{ border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px; }} | |
| </style></head><body> | |
| <div class="container"> | |
| <h1>Entity and Topic Analysis Report</h1> | |
| <div class="metadata"> | |
| <p><strong>Generated on:</strong> {time.strftime('%Y-%m-%d')}</p> | |
| <p><strong>Processing Time:</strong> {elapsed_time:.2f} seconds</p> | |
| </div> | |
| <h2>1. Analyzed Text & Extracted Entities</h2> | |
| <h3>Original Text with Highlighted Entities</h3> | |
| <div class="highlighted-text-container"> | |
| {highlighted_text_html} | |
| </div> | |
| <h2>2. Full Extracted Entities Table</h2> | |
| {entity_table_html} | |
| <h2>3. Data Visualizations</h2> | |
| <h3>3.1 Entity Distribution Treemap</h3> | |
| <div class="chart-box">{treemap_html}</div> | |
| <h3>3.2 Comparative Charts (Pie, Category Count, Frequency) - *Stacked Vertically*</h3> | |
| <div class="chart-box">{pie_html}</div> | |
| <div class="chart-box">{bar_category_html}</div> | |
| <div class="chart-box">{bar_freq_html}</div> | |
| <h3>3.3 Entity Relationship Map (Edges = Same Sentence)</h3> | |
| <div class="chart-box">{network_html}</div> | |
| <h2>4. Topic Modelling</h2> | |
| {topic_charts_html} | |
| </div></body></html> | |
| """ | |
| return html_content | |
| # --- Page Configuration and Styling (No Sidebar) --- | |
| st.set_page_config(layout="wide", page_title="NER & Topic Report App") | |
| # --- Conditional Mobile Warning --- | |
| st.markdown( | |
| """ | |
| <style> | |
| /* CSS Media Query: Only show the content inside this selector when the screen width is 600px or less (typical mobile size) */ | |
| @media (max-width: 600px) { | |
| #mobile-warning-container { | |
| display: block; /* Show the warning container */ | |
| background-color: #ffcccc; /* Light red/pink background */ | |
| color: #cc0000; /* Dark red text */ | |
| padding: 10px; | |
| border-radius: 5px; | |
| text-align: center; | |
| margin-bottom: 20px; | |
| font-weight: bold; | |
| border: 1px solid #cc0000; | |
| } | |
| } | |
| /* Hide the content by default (for larger screens) */ | |
| @media (min-width: 601px) { | |
| #mobile-warning-container { | |
| display: none; /* Hide the warning container on desktop */ | |
| } | |
| } | |
| </style> | |
| <div id="mobile-warning-container"> | |
| โ ๏ธ **Tip for Mobile Users:** For the best viewing experience of the charts and tables, please switch your browser to **"Desktop Site"** view. | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # ---------------------------------- | |
| st.markdown( | |
| """ | |
| <style> | |
| /* ... (Keep your existing styles for main, stApp, stTextArea, stButton) ... */ | |
| /* --- FIX: Tab Label Colors for Visibility --- */ | |
| /* Target the container for the tab labels (the buttons) */ | |
| [data-testid="stConfigurableTabs"] button { | |
| color: #333333 !important; /* Dark gray for inactive tabs */ | |
| background-color: #f0f0f0; /* Light gray background for inactive tabs */ | |
| border: 1px solid #cccccc; | |
| } | |
| /* Target the ACTIVE tab label */ | |
| [data-testid="stConfigurableTabs"] button[aria-selected="true"] { | |
| color: #FFFFFF !important; /* White text for active tab */ | |
| background-color: #007bff; /* Blue background for active tab */ | |
| border-bottom: 2px solid #007bff; /* Optional: adds an accent line */ | |
| } | |
| /* Expander header color fix (since you overwrote it to white) */ | |
| .streamlit-expanderHeader { | |
| color: #007bff; /* Blue text for Expander header */ | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| st.subheader("Entity and Topic Analysis Report Generator", divider="blue") # Changed divider from "rainbow" (often includes red/pink) to "blue" | |
| st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") | |
| tab1, tab2 = st.tabs(["Embed", "Important Notes"]) # Assuming you have defined the tabs | |
| with tab1: | |
| with st.expander("Embed"): | |
| st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.") | |
| code = ''' | |
| <iframe | |
| src="https://aiecosystem-dataharvest.hf.space" | |
| frameborder="0" | |
| width="850" | |
| height="450" | |
| ></iframe> | |
| ''' | |
| st.code(code, language="html") # Keeps the copy icon, as intended for tab1 | |
| with tab2: | |
| expander = st.expander("**Important Notes**") | |
| # Use st.markdown() with a code block (```) to display the notes | |
| # without the copy-to-clipboard icon, and retaining the styling. | |
| expander.markdown(""" | |
| **Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position" | |
| **Results:** Results are compiled into a single, comprehensive **HTML report** and a **CSV file** for easy download and sharing. | |
| **How to Use:** Type or paste your text into the text area below, press Ctrl + Enter, and then click the 'Results' button. | |
| **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. | |
| """) | |
| st.markdown("For any errors or inquiries, please contact us at [info@nlpblogs.com](mailto:info@nlpblogs.com)") | |
| # --- Comet ML Setup (Placeholder/Conditional) --- | |
| COMET_API_KEY = os.environ.get("COMET_API_KEY") | |
| COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") | |
| COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") | |
| comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME) | |
| # --- Model Loading --- | |
| def load_ner_model(): | |
| """Loads the GLiNER model and caches it.""" | |
| try: | |
| return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels) | |
| except Exception as e: | |
| st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}") | |
| st.stop() | |
| model = load_ner_model() | |
| # --- LONG DEFAULT TEXT (178 Words) --- | |
| DEFAULT_TEXT = ( | |
| "In June 2024, the founder, Dr. Emily Carter, officially announced a new, expansive partnership between " | |
| "TechSolutions Inc. and the European Space Agency (ESA). This strategic alliance represents a significant " | |
| "leap forward for commercial space technology across the entire **European Union**. The agreement, finalized " | |
| "on Monday in Paris, France, focuses specifically on jointly developing the next generation of the 'Astra' " | |
| "software platform. This version of the **Astra** platform is critical for processing and managing the vast amounts of data being sent " | |
| "back from the recent Mars rover mission. This project underscores the ESA's commitment to advancing " | |
| "space capabilities within the **European Union**. The core team, including lead engineer Marcus Davies, will hold " | |
| "their first collaborative workshop in Berlin, Germany, on August 15th. The community response on social " | |
| "media platform X (under the username @TechCEO) was overwhelmingly positive, with many major tech " | |
| "publications, including Wired Magazine, predicting a major impact on the space technology industry by the " | |
| "end of the year, further strengthening the technological standing of the **European Union**. The platform is designed to be compatible with both Windows and Linux operating systems. " | |
| "The initial funding, secured via a Series B round, totaled $50 million. Financial analysts from Morgan Stanley " | |
| "are closely monitoring the impact on TechSolutions Inc.'s Q3 financial reports, expected to be released to the " | |
| "general public by October 1st. The goal is to deploy the **Astra** v2 platform before the next solar eclipse event in 2026." | |
| ) | |
| # ----------------------------------- | |
| # --- Session State Initialization (CRITICAL FIX) --- | |
| if 'show_results' not in st.session_state: | |
| st.session_state.show_results = False | |
| if 'last_text' not in st.session_state: | |
| st.session_state.last_text = "" | |
| if 'results_df' not in st.session_state: | |
| st.session_state.results_df = pd.DataFrame() | |
| if 'elapsed_time' not in st.session_state: | |
| st.session_state.elapsed_time = 0.0 | |
| if 'topic_results' not in st.session_state: | |
| st.session_state.topic_results = None | |
| if 'my_text_area' not in st.session_state: | |
| st.session_state.my_text_area = DEFAULT_TEXT | |
| # --- Clear Button Function (MODIFIED) --- | |
| def clear_text(): | |
| """Clears the text area (sets it to an empty string) and hides results.""" | |
| st.session_state['my_text_area'] = "" | |
| st.session_state.show_results = False | |
| st.session_state.last_text = "" | |
| st.session_state.results_df = pd.DataFrame() | |
| st.session_state.elapsed_time = 0.0 | |
| st.session_state.topic_results = None | |
| # --- Text Input and Clear Button --- | |
| word_limit = 1000 | |
| text = st.text_area( | |
| f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", | |
| height=250, | |
| key='my_text_area', | |
| ) | |
| word_count = len(text.split()) | |
| st.markdown(f"**Word count:** {word_count}/{word_limit}") | |
| st.button("Clear text", on_click=clear_text) | |
| # --- Results Trigger and Processing (Updated Logic) --- | |
| if st.button("Results"): | |
| if not text.strip(): | |
| st.warning("Please enter some text to extract entities.") | |
| st.session_state.show_results = False | |
| elif word_count > word_limit: | |
| st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.") | |
| st.session_state.show_results = False | |
| else: | |
| with st.spinner("Extracting entities and generating report data...", show_time=True): | |
| if text != st.session_state.last_text: | |
| st.session_state.last_text = text | |
| start_time = time.time() | |
| # --- Model Prediction & Dataframe Creation --- | |
| entities = model.predict_entities(text, labels) | |
| df = pd.DataFrame(entities) | |
| if not df.empty: | |
| df['text'] = df['text'].apply(remove_trailing_punctuation) | |
| df['category'] = df['label'].map(reverse_category_mapping) | |
| st.session_state.results_df = df | |
| unique_entity_count = len(df['text'].unique()) | |
| N_TOP_WORDS_TO_USE = min(10, unique_entity_count) | |
| st.session_state.topic_results = perform_topic_modeling( | |
| df, | |
| num_topics=2, | |
| num_top_words=N_TOP_WORDS_TO_USE | |
| ) | |
| if comet_initialized: | |
| experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME) | |
| experiment.log_parameter("input_text", text) | |
| experiment.log_table("predicted_entities", df) | |
| experiment.end() | |
| else: | |
| st.session_state.results_df = pd.DataFrame() | |
| st.session_state.topic_results = None | |
| end_time = time.time() | |
| st.session_state.elapsed_time = end_time - start_time | |
| st.info(f"Report data generated in **{st.session_state.elapsed_time:.2f} seconds**.") | |
| st.session_state.show_results = True | |
| # --- Display Download Link and Results --- | |
| if st.session_state.show_results: | |
| df = st.session_state.results_df | |
| df_topic_data = st.session_state.topic_results | |
| if df.empty: | |
| st.warning("No entities were found in the provided text.") | |
| else: | |
| st.subheader("Analysis Results", divider="blue") | |
| # 1. Highlighted Text | |
| st.markdown("### 1. Analyzed Text with Highlighted Entities") | |
| st.markdown(highlight_entities(st.session_state.last_text, df), unsafe_allow_html=True) | |
| # 2. Detailed Entity Analysis Tabs | |
| st.markdown("### 2. Detailed Entity Analysis") | |
| tab_category_details, tab_treemap_viz = st.tabs(["๐ Entities Grouped by Category", "๐บ๏ธ Treemap Distribution"]) | |
| with tab_category_details: | |
| st.markdown("#### Detailed Entities Table (Grouped by Category)") | |
| unique_categories = list(category_mapping.keys()) | |
| tabs_category = st.tabs(unique_categories) | |
| for category, tab in zip(unique_categories, tabs_category): | |
| df_category = df[df['category'] == category][['text', 'label', 'score', 'start', 'end']].sort_values(by='score', ascending=False) | |
| with tab: | |
| st.markdown(f"##### {category} Entities ({len(df_category)} total)") | |
| if not df_category.empty: | |
| st.dataframe( | |
| df_category, | |
| use_container_width=True, | |
| column_config={'score': st.column_config.NumberColumn(format="%.4f")} | |
| ) | |
| else: | |
| st.info(f"No entities of category **{category}** were found in the text.") | |
| with st.expander("See Glossary of tags"): | |
| st.write(''' | |
| - **text**: ['entity extracted from your text data'] | |
| - **label**: ['label (tag) assigned to a given extracted entity'] | |
| - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity'] | |
| - **start**: ['index of the start of the corresponding entity'] | |
| - **end**: ['index of the end of the corresponding entity'] | |
| ''') | |
| with tab_treemap_viz: | |
| st.markdown("#### Treemap: Entity Distribution") | |
| fig_treemap = px.treemap( | |
| df, | |
| path=[px.Constant("All Entities"), 'category', 'label', 'text'], | |
| values='score', | |
| color='category', | |
| color_discrete_sequence=px.colors.qualitative.Dark24 | |
| ) | |
| fig_treemap.update_layout(margin=dict(t=10, l=10, r=10, b=10)) | |
| st.plotly_chart(fig_treemap, use_container_width=True) | |
| # 3. Comparative Charts | |
| st.markdown("---") | |
| st.markdown("### 3. Comparative Charts") | |
| col1, col2, col3 = st.columns(3) | |
| grouped_counts = df['category'].value_counts().reset_index() | |
| grouped_counts.columns = ['Category', 'Count'] | |
| with col1: # Pie Chart | |
| # Changed color_discrete_sequence | |
| fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=px.colors.sequential.Cividis) | |
| fig_pie.update_layout(margin=dict(t=30, b=10, l=10, r=10), height=350) | |
| st.plotly_chart(fig_pie, use_container_width=True) | |
| with col2: # Bar Chart (Category Count) | |
| fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=px.colors.qualitative.Pastel) | |
| fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=30, b=10, l=10, r=10), height=350) | |
| st.plotly_chart(fig_bar_category, use_container_width=True) | |
| with col3: # Bar Chart (Most Frequent Entities) | |
| word_counts = df['text'].value_counts().reset_index() | |
| word_counts.columns = ['Entity', 'Count'] | |
| repeating_entities = word_counts[word_counts['Count'] > 1].head(10) | |
| if not repeating_entities.empty: | |
| # Changed color_discrete_sequence | |
| fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis) | |
| fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=30, b=10, l=10, r=10), height=350) | |
| st.plotly_chart(fig_bar_freq, use_container_width=True) | |
| else: | |
| st.info("No entities repeat for frequency chart.") | |
| st.markdown("---") | |
| st.markdown("### 4. Entity Relationship Map") | |
| network_fig = generate_network_graph(df, st.session_state.last_text) | |
| st.plotly_chart(network_fig, use_container_width=True) | |
| st.markdown("---") | |
| st.markdown("### 5. Topic Modelling Analysis") | |
| if df_topic_data is not None and not df_topic_data.empty: | |
| bubble_figure = create_topic_word_bubbles(df_topic_data) | |
| if bubble_figure: | |
| st.plotly_chart(bubble_figure, use_container_width=True) | |
| else: | |
| st.error("Error generating Topic Word Bubble Chart.") | |
| else: | |
| st.info("Topic modeling requires more unique input (at least two unique entities).") | |
| # --- Report Download --- | |
| st.markdown("---") | |
| st.markdown("### Download Full Report Artifacts") | |
| # 1. HTML Report Download (Retained) | |
| html_report = generate_html_report(df, st.session_state.last_text, st.session_state.elapsed_time, df_topic_data) | |
| st.download_button( | |
| label="Download Comprehensive HTML Report", | |
| data=html_report, | |
| file_name="ner_topic_report.html", | |
| mime="text/html", | |
| type="primary" | |
| ) | |
| # 2. CSV Data Download (NEW) | |
| csv_buffer = generate_entity_csv(df) | |
| st.download_button( | |
| label="Download Extracted Entities (CSV)", | |
| data=csv_buffer, | |
| file_name="extracted_entities.csv", | |
| mime="text/csv", | |
| type="secondary" | |
| ) | |