File size: 36,594 Bytes
e342cce
9881c2e
e342cce
4b151cd
758f35b
e342cce
 
 
758f35b
 
 
6ff1fb4
758f35b
9881c2e
758f35b
 
 
 
 
9881c2e
758f35b
 
 
9881c2e
e342cce
758f35b
a2672ee
9881c2e
 
 
661af61
 
dc5bebf
 
 
34dc6a3
661af61
 
be296e7
 
 
8caecd7
 
 
 
 
 
 
 
 
 
 
 
 
 
9881c2e
 
 
 
 
758f35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9881c2e
758f35b
 
 
 
 
 
9881c2e
758f35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57aeb9d
758f35b
 
 
 
27fe016
9881c2e
758f35b
 
27fe016
9881c2e
758f35b
9881c2e
758f35b
9881c2e
758f35b
 
9881c2e
758f35b
27fe016
758f35b
9881c2e
 
758f35b
27fe016
 
 
9881c2e
758f35b
27fe016
758f35b
 
9881c2e
27fe016
 
 
 
 
 
 
 
 
 
 
 
758f35b
27fe016
 
758f35b
 
9881c2e
27fe016
758f35b
 
 
9881c2e
758f35b
 
9881c2e
758f35b
 
 
 
 
 
9881c2e
758f35b
9881c2e
758f35b
9881c2e
 
758f35b
9881c2e
 
 
 
57aeb9d
758f35b
57aeb9d
 
758f35b
9881c2e
 
57aeb9d
758f35b
 
9881c2e
758f35b
 
 
 
57aeb9d
758f35b
b5938f9
57aeb9d
 
9881c2e
758f35b
 
 
 
 
 
 
 
 
57aeb9d
758f35b
b5938f9
758f35b
9881c2e
9144ce2
758f35b
 
57aeb9d
 
 
758f35b
 
9881c2e
 
57aeb9d
9881c2e
57aeb9d
9881c2e
 
 
 
57aeb9d
 
 
9881c2e
758f35b
57aeb9d
9881c2e
 
758f35b
 
 
9881c2e
758f35b
9881c2e
758f35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9881c2e
758f35b
 
 
 
 
 
 
 
 
 
 
9881c2e
 
758f35b
 
142d571
9881c2e
758f35b
142d571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9881c2e
142d571
 
 
 
 
 
 
 
 
 
 
 
 
9881c2e
142d571
 
 
 
 
 
758f35b
 
 
 
 
9881c2e
29c55cc
758f35b
 
 
9881c2e
758f35b
 
 
 
 
 
 
 
 
 
9881c2e
758f35b
 
 
 
 
 
9881c2e
 
 
 
758f35b
9881c2e
 
758f35b
9881c2e
758f35b
9881c2e
758f35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6688219
9881c2e
633d9eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9881c2e
 
 
 
 
 
 
 
758f35b
 
 
9881c2e
1adc360
9881c2e
1adc360
9881c2e
 
1adc360
758f35b
1adc360
 
9881c2e
 
 
758f35b
9881c2e
 
1adc360
9881c2e
758f35b
 
 
6688219
 
 
9881c2e
 
e342cce
9f4b73f
9881c2e
 
 
 
 
cb74a47
758f35b
 
 
 
 
dd24b7c
758f35b
 
 
 
 
9881c2e
 
 
9f4b73f
758f35b
 
9881c2e
 
cb74a47
 
9881c2e
cb74a47
9881c2e
758f35b
9881c2e
cb74a47
 
758f35b
9881c2e
 
e342cce
758f35b
e342cce
 
 
 
 
 
 
758f35b
 
 
 
 
 
e342cce
b2f8b8b
9881c2e
758f35b
 
 
1f7b00a
758f35b
6a5b816
1f7b00a
 
758f35b
6a5b816
758f35b
1f7b00a
758f35b
 
6a5b816
 
b2f8b8b
9881c2e
 
 
 
 
 
 
 
 
efb6584
758f35b
efb6584
758f35b
efb6584
758f35b
e02388e
758f35b
 
 
 
 
9881c2e
758f35b
 
 
 
 
 
 
 
e342cce
758f35b
 
 
 
9881c2e
9144ce2
5283a70
 
6ff1fb4
758f35b
e342cce
758f35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9881c2e
758f35b
 
 
 
 
 
 
 
 
 
9881c2e
758f35b
 
 
 
 
9881c2e
 
 
758f35b
 
 
 
 
 
 
 
 
 
 
 
9881c2e
 
 
 
 
 
 
 
 
 
 
 
 
758f35b
9881c2e
758f35b
 
 
 
 
 
 
9881c2e
758f35b
9881c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb6584
9881c2e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import io
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import re
import string
import json
# --- PPTX Imports ---
from io import BytesIO
from pptx import Presentation
from pptx.util import Inches, Pt
from pptx.enum.text import MSO_ANCHOR, MSO_AUTO_SIZE
import plotly.io as pio # Required for image export
# ---------------------------
# --- Stable Scikit-learn LDA Imports ---
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
# ------------------------------
from gliner import GLiNER
from streamlit_extras.stylable_container import stylable_container












 





















# Using a try/except for comet_ml import
try:
    from comet_ml import Experiment
except ImportError:
    class Experiment:
        def __init__(self, **kwargs): pass
        def log_parameter(self, *args): pass
        def log_table(self, *args): pass
        def end(self): pass
# --- Model Home Directory (Fix for deployment environments) ---
# Set HF_HOME environment variable to a writable path
os.environ['HF_HOME'] = '/tmp'
# --- Color Map for Highlighting and Network Graph Nodes ---
entity_color_map = {
    "person": "#10b981",
    "country": "#3b82f6",
    "city": "#4ade80",
    "organization": "#f59e0b",
    "date": "#8b5cf6",
    "time": "#ec4899",
    "cardinal": "#06b6d4",
    "money": "#f43f5e",
    "position": "#a855f7",
    }
# --- Label Definitions and Category Mapping (Used by the App and PPTX) ---
labels = list(entity_color_map.keys())
category_mapping = {
   "People": ["person", "organization", "position"],
   "Locations": ["country", "city"],
   "Time": ["date", "time"],
   "Numbers": ["money", "cardinal"]}
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
# --- Utility Functions for Analysis and Plotly ---
def extract_label(node_name):
    """Extracts the label from a node string like 'Text (Label)'."""
    match = re.search(r'\(([^)]+)\)$', node_name)
    return match.group(1) if match else "Unknown"
def remove_trailing_punctuation(text_string):
    """Removes trailing punctuation from a string."""
    return text_string.rstrip(string.punctuation)
def highlight_entities(text, df_entities):
    """Generates HTML to display text with entities highlighted and colored."""
    if df_entities.empty:
        return text
    # Sort entities by start index descending to insert highlights without affecting subsequent indices
    entities = df_entities.sort_values(by='start', ascending=False).to_dict('records')
    highlighted_text = text
    for entity in entities:
        start = entity['start']
        end = entity['end']
        label = entity['label']
        entity_text = entity['text']
        color = entity_color_map.get(label, '#000000')
        # Create a span with background color and tooltip
        highlight_html = f'<span style="background-color: {color}; color: white; padding: 2px 4px; border-radius: 3px; cursor: help;" title="{label}">{entity_text}</span>'
        # Replace the original text segment with the highlighted HTML
        highlighted_text = highlighted_text[:start] + highlight_html + highlighted_text[end:]
    # Use a div to mimic the Streamlit input box style for the report
    return f'<div style="border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px;">{highlighted_text}</div>'


def perform_topic_modeling(df_entities, num_topics=2, num_top_words=10):
    """
    Performs basic Topic Modeling using LDA on the extracted entities,
    allowing for n-grams to capture multi-word entities like 'Dr. Emily Carter'.
    """
    # 1. Prepare Documents: Use unique entities (they are short, clean documents)
    documents = df_entities['text'].unique().tolist()
    
    if len(documents) < 2:
        return None
        
    N = min(num_top_words, len(documents))

    try:
        # 2. Vectorizer: Use TfidfVectorizer, but allow unigrams, bigrams, and trigrams (ngram_range)
        # to capture multi-word entities. We keep stop_words='english' for the *components* of the entity.
        tfidf_vectorizer = TfidfVectorizer(
            max_df=0.95, 
            min_df=2, # Only consider words/phrases that appear at least twice to find topics
            stop_words='english',
            ngram_range=(1, 3) # This is the KEY to capturing "Dr. Emily Carter" as a single token (if it appears enough times)
        )

        tfidf = tfidf_vectorizer.fit_transform(documents)
        tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
        
        # Check if the vocabulary is too small after tokenization/ngram generation
        if len(tfidf_feature_names) < num_topics:
            # Re-run with min_df=1 if vocab is too small
            tfidf_vectorizer = TfidfVectorizer(
                max_df=1.0, min_df=1, stop_words='english', ngram_range=(1, 3)
            )
            tfidf = tfidf_vectorizer.fit_transform(documents)
            tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
            if len(tfidf_feature_names) < num_topics:
                return None
        
        # 3. LDA Model Fit
        lda = LatentDirichletAllocation(
            n_components=num_topics, max_iter=5, learning_method='online',
            random_state=42, n_jobs=-1
        )
        lda.fit(tfidf)
        
        # 4. Extract Topic Data
        topic_data_list = []
        for topic_idx, topic in enumerate(lda.components_):
            top_words_indices = topic.argsort()[:-N - 1:-1]
            # These top_words will now include phrases like 'emily carter' or 'european space agency'
            top_words = [tfidf_feature_names[i] for i in top_words_indices]
            word_weights = [topic[i] for i in top_words_indices]
            
            for word, weight in zip(top_words, word_weights):
                topic_data_list.append({
                    'Topic_ID': f'Topic #{topic_idx + 1}',
                    'Word': word,
                    'Weight': weight,
                })
                
        return pd.DataFrame(topic_data_list)
        
    except Exception as e:
        # A broader catch for robustness
        # st.error(f"Topic modeling failed: {e}") # Keep commented out for cleaner app
        return None



  
        
def create_topic_word_bubbles(df_topic_data):
    """Generates a Plotly Bubble Chart for top words across
    all topics, displaying the word directly on the bubble."""
    # Renaming columns to match the output of perform_topic_modeling
    df_topic_data = df_topic_data.rename(columns={'Topic_ID': 'topic',
'Word': 'word', 'Weight': 'weight'})
    df_topic_data['x_pos'] = df_topic_data.index # Use index for x-position
    if df_topic_data.empty:
        return None
        
    fig = px.scatter(
        df_topic_data,
        x='x_pos',
        y='weight',
        size='weight',
        color='topic',
        # Set text to the word
        text='word', 
        hover_name='word', 
        size_max=40,
        title='Topic Word Weights (Bubble Chart)',
        color_discrete_sequence=px.colors.qualitative.Bold,
        labels={
            'x_pos': 'Entity/Word Index',
            'weight': 'Word Weight',
            'topic': 'Topic ID'
        },
        custom_data=['word', 'weight', 'topic']
    )

    fig.update_layout(
        xaxis_title="Entity/Word",
        yaxis_title="Word Weight",
        # Hide x-axis labels since words are now labels
        xaxis={'tickangle': -45, 'showgrid': False, 'showticklabels': False, 'zeroline': False, 'showline': False}, 
        yaxis={'showgrid': True},
        showlegend=True,
        plot_bgcolor='#f9f9f9',
        paper_bgcolor='#f9f9f9',
        height=600,
        margin=dict(t=50, b=100, l=50, r=10),
    )
    
    # Update traces to show the word text, set the text position, and set text color
    fig.update_traces(
        # Position the text on top of the bubble
        textposition='middle center', 
        # --- THE KEY FIX IS HERE ---
        # Set the text color to white for visibility against dark bubble colors
        textfont=dict(color='white', size=10),
        # ---------------------------
        hovertemplate='<b>%{customdata[0]}</b><br>Weight: %{customdata[1]:.3f}<extra></extra>',
        marker=dict(line=dict(width=1, color='DarkSlateGrey'))
    )
    
    return fig


    
def generate_network_graph(df, raw_text):
    """
    Generates a network graph visualization (Node Plot) with edges
    based on entity co-occurrence in sentences. (Content omitted for brevity but assumed to be here).
    """
    # Using the existing generate_network_graph logic from previous context...
    entity_counts = df['text'].value_counts().reset_index()
    entity_counts.columns = ['text', 'frequency']
    unique_entities = df.drop_duplicates(subset=['text', 'label']).merge(entity_counts, on='text')
    if unique_entities.shape[0] < 2:
        return go.Figure().update_layout(title="Not enough unique entities for a meaningful graph.")
    num_nodes = len(unique_entities)
    thetas = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False)
    radius = 10
    unique_entities['x'] = radius * np.cos(thetas) + np.random.normal(0, 0.5, num_nodes)
    unique_entities['y'] = radius * np.sin(thetas) + np.random.normal(0, 0.5, num_nodes)
    pos_map = unique_entities.set_index('text')[['x', 'y']].to_dict('index')
    edges = set()
    sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s', raw_text)
    for sentence in sentences:
        entities_in_sentence = []
        for entity_text in unique_entities['text'].unique():
            if entity_text.lower() in sentence.lower():
                entities_in_sentence.append(entity_text)
        unique_entities_in_sentence = list(set(entities_in_sentence))
        for i in range(len(unique_entities_in_sentence)):
            for j in range(i + 1, len(unique_entities_in_sentence)):
                node1 = unique_entities_in_sentence[i]
                node2 = unique_entities_in_sentence[j]
                edge_tuple = tuple(sorted((node1, node2)))
                edges.add(edge_tuple)
    edge_x = []
    edge_y = []
    for edge in edges:
        n1, n2 = edge
        if n1 in pos_map and n2 in pos_map:
            edge_x.extend([pos_map[n1]['x'], pos_map[n2]['x'], None])
            edge_y.extend([pos_map[n1]['y'], pos_map[n2]['y'], None])
    fig = go.Figure()
    edge_trace = go.Scatter(
        x=edge_x, y=edge_y,
        line=dict(width=0.5, color='#888'),
        hoverinfo='none',
        mode='lines',
        name='Co-occurrence Edges',
        showlegend=False
    )
    fig.add_trace(edge_trace)
    fig.add_trace(go.Scatter(
        x=unique_entities['x'],
        y=unique_entities['y'],
        mode='markers+text',
        name='Entities',
        text=unique_entities['text'],
        textposition="top center",
        showlegend=False,
        marker=dict(
            size=unique_entities['frequency'] * 5 + 10,
            color=[entity_color_map.get(label, '#cccccc') for label in unique_entities['label']],
            line_width=1,
            line_color='black',
            opacity=0.9
        ),
        textfont=dict(size=10),
        customdata=unique_entities[['label', 'score', 'frequency']],
        hovertemplate=(
            "<b>%{text}</b><br>" +
            "Label: %{customdata[0]}<br>" +
            "Score: %{customdata[1]:.2f}<br>" +
            "Frequency: %{customdata[2]}<extra></extra>"
        )
    ))
    legend_traces = []
    seen_labels = set()
    for index, row in unique_entities.iterrows():
        label = row['label']
        if label not in seen_labels:
            seen_labels.add(label)
            color = entity_color_map.get(label, '#cccccc')
            legend_traces.append(go.Scatter(
                x=[None], y=[None], mode='markers', marker=dict(size=10, color=color), name=f"{label.capitalize()}", showlegend=True
            ))
    for trace in legend_traces:
        fig.add_trace(trace)
    fig.update_layout(
        title='Entity Co-occurrence Network (Edges = Same Sentence)',
        showlegend=True,
        hovermode='closest',
        xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]),
        yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]),
        plot_bgcolor='#f9f9f9',
        paper_bgcolor='#f9f9f9',
        margin=dict(t=50, b=10, l=10, r=10),
        height=600
    )
    return fig
# --- NEW CSV GENERATION FUNCTION ---
def generate_entity_csv(df):
    """
    Generates a CSV file of the extracted entities in an in-memory buffer,
    including text, label, category, score, start, and end indices.
    """
    csv_buffer = BytesIO()
    # Select desired columns and write to buffer
    df_export = df[['text', 'label', 'category', 'score', 'start', 'end']]
    csv_buffer.write(df_export.to_csv(index=False).encode('utf-8'))
    csv_buffer.seek(0)
    return csv_buffer
# -----------------------------------
# --- Existing App Functionality (HTML) ---
def generate_html_report(df, text_input, elapsed_time, df_topic_data):
    """
    Generates a full HTML report containing all analysis results and visualizations.
    (Content omitted for brevity but assumed to be here).
    """
    # 1. Generate Visualizations (Plotly HTML)
    # 1a. Treemap
    fig_treemap = px.treemap(
        df,
        path=[px.Constant("All Entities"), 'category', 'label', 'text'],
        values='score',
        color='category',
        title="Entity Distribution by Category and Label",
        color_discrete_sequence=px.colors.qualitative.Dark24
    )
    fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    treemap_html = fig_treemap.to_html(full_html=False, include_plotlyjs='cdn')
    # 1b. Pie Chart
    grouped_counts = df['category'].value_counts().reset_index()
    grouped_counts.columns = ['Category', 'Count']
    # Changed color_discrete_sequence from sequential.RdBu (which has reds) to sequential.Cividis
    fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=px.colors.sequential.Cividis)
    fig_pie.update_layout(margin=dict(t=50, b=10))
    pie_html = fig_pie.to_html(full_html=False, include_plotlyjs='cdn')
    # 1c. Bar Chart (Category Count)
    fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=px.colors.qualitative.Pastel)
    fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
    bar_category_html = fig_bar_category.to_html(full_html=False,include_plotlyjs='cdn')
    # 1d. Bar Chart (Most Frequent Entities)
    word_counts = df['text'].value_counts().reset_index()
    word_counts.columns = ['Entity', 'Count']
    repeating_entities = word_counts[word_counts['Count'] > 1].head(10)
    bar_freq_html = '<p>No entities appear more than once in the text for visualization.</p>'
    if not repeating_entities.empty:
        # Changed color_discrete_sequence from sequential.Plasma (which has pink/magenta) to sequential.Viridis
        fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis)
        fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
        bar_freq_html = fig_bar_freq.to_html(full_html=False, include_plotlyjs='cdn')
    # 1e. Network Graph HTML
    network_fig = generate_network_graph(df, text_input)
    network_html = network_fig.to_html(full_html=False, include_plotlyjs='cdn')
    # 1f. Topic Charts HTML
    topic_charts_html = '<h3>Topic Word Weights (Bubble Chart)</h3>'
    if df_topic_data is not None and not df_topic_data.empty:
        bubble_figure = create_topic_word_bubbles(df_topic_data)
        if bubble_figure:
            
            topic_charts_html += f'<div class="chart-box">{bubble_figure.to_html(full_html=False, include_plotlyjs="cdn", config={"responsive": True})}</div>'
        else:
            topic_charts_html += '<p style="color: red;">Error: Topic modeling data was available but visualization failed.</p>'
    else:
        topic_charts_html += '<div class="chart-box" style="text-align: center; padding: 50px; background-color: #fff; border: 1px dashed #888888;">' # Changed border color
        topic_charts_html += '<p><strong>Topic Modeling requires more unique input.</strong></p>'
        topic_charts_html += '<p>Please enter text containing at least two unique entities to generate the Topic Bubble Chart.</p>'
        topic_charts_html += '</div>'
    # 2. Get Highlighted Text
    highlighted_text_html = highlight_entities(text_input, df).replace("div style", "div class='highlighted-text' style")
    # 3. Entity Tables (Pandas to HTML)
    entity_table_html = df[['text', 'label', 'score', 'start', 'end', 'category']].to_html(
        classes='table table-striped',
        index=False
    )
    # 4. Construct the Final HTML
    html_content = f"""<!DOCTYPE html><html lang="en"><head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Entity and Topic Analysis Report</title>
    <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
    <style>
        body {{ font-family: 'Inter', sans-serif; margin: 0; padding: 20px; background-color: #f4f4f9; color: #333; }}
        .container {{ max-width: 1200px; margin: 0 auto; background-color: #ffffff; padding: 30px; border-radius: 12px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); }}
        h1 {{ color: #007bff; border-bottom: 3px solid #007bff; padding-bottom: 10px; margin-top: 0; }}
        h2 {{ color: #007bff; margin-top: 30px; border-bottom: 1px solid #ddd; padding-bottom: 5px; }}
        h3 {{ color: #555; margin-top: 20px; }}
        .metadata {{ background-color: #e6f0ff; padding: 15px; border-radius: 8px; margin-bottom: 20px; font-size: 0.9em; }}
        .chart-box {{ background-color: #f9f9f9; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); min-width: 0; margin-bottom: 20px; }}
        table {{ width: 100%; border-collapse: collapse; margin-top: 15px; }}
        table th, table td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
        table th {{ background-color: #f0f0f0; }}
        .highlighted-text {{ border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px; }}
    </style></head><body>
    <div class="container">
        <h1>Entity and Topic Analysis Report</h1>
        <div class="metadata">
            <p><strong>Generated on:</strong> {time.strftime('%Y-%m-%d')}</p>
            <p><strong>Processing Time:</strong> {elapsed_time:.2f} seconds</p>
        </div>
        <h2>1. Analyzed Text & Extracted Entities</h2>
        <h3>Original Text with Highlighted Entities</h3>
        <div class="highlighted-text-container">
            {highlighted_text_html}
        </div>
        <h2>2. Full Extracted Entities Table</h2>
        {entity_table_html}
        <h2>3. Data Visualizations</h2>
        <h3>3.1 Entity Distribution Treemap</h3>
        <div class="chart-box">{treemap_html}</div>
        <h3>3.2 Comparative Charts (Pie, Category Count, Frequency) - *Stacked Vertically*</h3>
        <div class="chart-box">{pie_html}</div>
        <div class="chart-box">{bar_category_html}</div>
        <div class="chart-box">{bar_freq_html}</div>
        <h3>3.3 Entity Relationship Map (Edges = Same Sentence)</h3>
        <div class="chart-box">{network_html}</div>
        <h2>4. Topic Modelling</h2>
        {topic_charts_html}
    </div></body></html>
    """
    return html_content
# --- Page Configuration and Styling (No Sidebar) ---
st.set_page_config(layout="wide", page_title="NER & Topic Report App")


# --- Conditional Mobile Warning ---
st.markdown(
    """
    <style>
    /* CSS Media Query: Only show the content inside this selector when the screen width is 600px or less (typical mobile size) */
    @media (max-width: 600px) {
        #mobile-warning-container {
            display: block; /* Show the warning container */
            background-color: #ffcccc; /* Light red/pink background */
            color: #cc0000; /* Dark red text */
            padding: 10px;
            border-radius: 5px;
            text-align: center;
            margin-bottom: 20px;
            font-weight: bold;
            border: 1px solid #cc0000;
        }
    }
    
    /* Hide the content by default (for larger screens) */
    @media (min-width: 601px) {
        #mobile-warning-container {
            display: none; /* Hide the warning container on desktop */
        }
    }
    </style>
    
    <div id="mobile-warning-container">
        โš ๏ธ **Tip for Mobile Users:** For the best viewing experience of the charts and tables, please switch your browser to **"Desktop Site"** view.
    </div>
    """,
    unsafe_allow_html=True
)
# ----------------------------------









st.markdown(
    """
    <style>
    /* ... (Keep your existing styles for main, stApp, stTextArea, stButton) ... */
    /* --- FIX: Tab Label Colors for Visibility --- */
    /* Target the container for the tab labels (the buttons) */
    [data-testid="stConfigurableTabs"] button {
        color: #333333 !important; /* Dark gray for inactive tabs */
        background-color: #f0f0f0; /* Light gray background for inactive tabs */
        border: 1px solid #cccccc;
    }
    /* Target the ACTIVE tab label */
    [data-testid="stConfigurableTabs"] button[aria-selected="true"] {
        color: #FFFFFF !important; /* White text for active tab */
        background-color: #007bff; /* Blue background for active tab */
        border-bottom: 2px solid #007bff; /* Optional: adds an accent line */
    }
    
    /* Expander header color fix (since you overwrote it to white) */
    .streamlit-expanderHeader {
        color: #007bff; /* Blue text for Expander header */
    }
    </style>
    """,
    unsafe_allow_html=True
)


st.subheader("Entity and Topic Analysis Report Generator", divider="blue") # Changed divider from "rainbow" (often includes red/pink) to "blue"
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")





tab1, tab2 = st.tabs(["Embed", "Important Notes"]) # Assuming you have defined the tabs

with tab1:
    with st.expander("Embed"):
        st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
        code = '''
    <iframe
        src="https://aiecosystem-dataharvest.hf.space"
        frameborder="0"
        width="850"
        height="450"
    ></iframe>
    '''
        st.code(code, language="html") # Keeps the copy icon, as intended for tab1



with tab2:
    expander = st.expander("**Important Notes**")
    # Use st.markdown() with a code block (```) to display the notes
    # without the copy-to-clipboard icon, and retaining the styling.
    expander.markdown("""
    **Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"
    
    **Results:** Results are compiled into a single, comprehensive **HTML report** and a **CSV file** for easy download and sharing.
    
    **How to Use:** Type or paste your text into the text area below, press Ctrl + Enter, and then click the 'Results' button.
    
    **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
    """)
        

st.markdown("For any errors or inquiries, please contact us at [info@nlpblogs.com](mailto:info@nlpblogs.com)")

# --- Comet ML Setup (Placeholder/Conditional) ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
# --- Model Loading ---
@st.cache_resource
def load_ner_model():
    """Loads the GLiNER model and caches it."""
    try:
        return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
    except Exception as e:
        st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
        st.stop()
model = load_ner_model()
# --- LONG DEFAULT TEXT (178 Words) ---

DEFAULT_TEXT = (
    "In June 2024, the founder, Dr. Emily Carter, officially announced a new, expansive partnership between "
    "TechSolutions Inc. and the European Space Agency (ESA). This strategic alliance represents a significant "
    "leap forward for commercial space technology across the entire **European Union**. The agreement, finalized "
    "on Monday in Paris, France, focuses specifically on jointly developing the next generation of the 'Astra' "
    "software platform. This version of the **Astra** platform is critical for processing and managing the vast amounts of data being sent "
    "back from the recent Mars rover mission. This project underscores the ESA's commitment to advancing "
    "space capabilities within the **European Union**. The core team, including lead engineer Marcus Davies, will hold "
    "their first collaborative workshop in Berlin, Germany, on August 15th. The community response on social "
    "media platform X (under the username @TechCEO) was overwhelmingly positive, with many major tech "
    "publications, including Wired Magazine, predicting a major impact on the space technology industry by the "
    "end of the year, further strengthening the technological standing of the **European Union**. The platform is designed to be compatible with both Windows and Linux operating systems. "
    "The initial funding, secured via a Series B round, totaled $50 million. Financial analysts from Morgan Stanley "
    "are closely monitoring the impact on TechSolutions Inc.'s Q3 financial reports, expected to be released to the "
    "general public by October 1st. The goal is to deploy the **Astra** v2 platform before the next solar eclipse event in 2026."
)








# -----------------------------------
# --- Session State Initialization (CRITICAL FIX) ---
if 'show_results' not in st.session_state:
    st.session_state.show_results = False
if 'last_text' not in st.session_state:
    st.session_state.last_text = ""
if 'results_df' not in st.session_state:
    st.session_state.results_df = pd.DataFrame()
if 'elapsed_time' not in st.session_state:
    st.session_state.elapsed_time = 0.0
if 'topic_results' not in st.session_state:
    st.session_state.topic_results = None
if 'my_text_area' not in st.session_state:
    st.session_state.my_text_area = DEFAULT_TEXT
# --- Clear Button Function (MODIFIED) ---
def clear_text():
    """Clears the text area (sets it to an empty string) and hides results."""
    st.session_state['my_text_area'] = ""
    st.session_state.show_results = False
    st.session_state.last_text = ""
    st.session_state.results_df = pd.DataFrame()
    st.session_state.elapsed_time = 0.0
    st.session_state.topic_results = None
# --- Text Input and Clear Button ---
word_limit = 1000
text = st.text_area(
    f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter",
    height=250,
    key='my_text_area',
    )
word_count = len(text.split())
st.markdown(f"**Word count:** {word_count}/{word_limit}")
st.button("Clear text", on_click=clear_text)
# --- Results Trigger and Processing (Updated Logic) ---
if st.button("Results"):
    if not text.strip():
        st.warning("Please enter some text to extract entities.")
        st.session_state.show_results = False
    elif word_count > word_limit:
        st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
        st.session_state.show_results = False
    else:
        with st.spinner("Extracting entities and generating report data...", show_time=True):
            if text != st.session_state.last_text:
                st.session_state.last_text = text
                start_time = time.time()
                # --- Model Prediction & Dataframe Creation ---
                entities = model.predict_entities(text, labels)
                df = pd.DataFrame(entities)
                if not df.empty:
                    df['text'] = df['text'].apply(remove_trailing_punctuation)
                    df['category'] = df['label'].map(reverse_category_mapping)
                    st.session_state.results_df = df
                    unique_entity_count = len(df['text'].unique())
                    N_TOP_WORDS_TO_USE = min(10, unique_entity_count)
                    st.session_state.topic_results = perform_topic_modeling(
                        df,
                        num_topics=2,
                        num_top_words=N_TOP_WORDS_TO_USE
                    )
                    if comet_initialized:
                        experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
                        experiment.log_parameter("input_text", text)
                        experiment.log_table("predicted_entities", df)
                        experiment.end()
                else:
                    st.session_state.results_df = pd.DataFrame()
                    st.session_state.topic_results = None
                end_time = time.time()
                st.session_state.elapsed_time = end_time - start_time
                st.info(f"Report data generated in **{st.session_state.elapsed_time:.2f} seconds**.")
            st.session_state.show_results = True
# --- Display Download Link and Results ---
if st.session_state.show_results:
    df = st.session_state.results_df
    df_topic_data = st.session_state.topic_results
    if df.empty:
        st.warning("No entities were found in the provided text.")
    else:
        st.subheader("Analysis Results", divider="blue")
        # 1. Highlighted Text
        st.markdown("### 1. Analyzed Text with Highlighted Entities")
        st.markdown(highlight_entities(st.session_state.last_text, df), unsafe_allow_html=True)

        # 2. Detailed Entity Analysis Tabs
        st.markdown("### 2. Detailed Entity Analysis")
        tab_category_details, tab_treemap_viz = st.tabs(["๐Ÿ“‘ Entities Grouped by Category", "๐Ÿ—บ๏ธ Treemap Distribution"])
        with tab_category_details:
            st.markdown("#### Detailed Entities Table (Grouped by Category)")
            
            
                
            unique_categories = list(category_mapping.keys())
            tabs_category = st.tabs(unique_categories)
            for category, tab in zip(unique_categories, tabs_category):
                df_category = df[df['category'] == category][['text', 'label', 'score', 'start', 'end']].sort_values(by='score', ascending=False)
                with tab:
                    st.markdown(f"##### {category} Entities ({len(df_category)} total)")
                    if not df_category.empty:
                        st.dataframe(
                            df_category,
                            use_container_width=True,
                            column_config={'score': st.column_config.NumberColumn(format="%.4f")}
                        )
                    else:
                        st.info(f"No entities of category **{category}** were found in the text.")

            
            with st.expander("See Glossary of tags"):
                st.write('''
                - **text**: ['entity extracted from your text data']
                - **label**: ['label (tag) assigned to a given extracted entity']
                - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
                - **start**: ['index of the start of the corresponding entity']
                - **end**: ['index of the end of the corresponding entity']
                ''')
                
        with tab_treemap_viz:
            st.markdown("#### Treemap: Entity Distribution")
            fig_treemap = px.treemap(
                df,
                path=[px.Constant("All Entities"), 'category', 'label', 'text'],
                values='score',
                color='category',
                color_discrete_sequence=px.colors.qualitative.Dark24
            )
            fig_treemap.update_layout(margin=dict(t=10, l=10, r=10, b=10))
            st.plotly_chart(fig_treemap, use_container_width=True)
        # 3. Comparative Charts
        st.markdown("---")
        st.markdown("### 3. Comparative Charts")
        col1, col2, col3 = st.columns(3)
        grouped_counts = df['category'].value_counts().reset_index()
        grouped_counts.columns = ['Category', 'Count']
        with col1: # Pie Chart
            # Changed color_discrete_sequence
            fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=px.colors.sequential.Cividis)
            fig_pie.update_layout(margin=dict(t=30, b=10, l=10, r=10), height=350)
            st.plotly_chart(fig_pie, use_container_width=True)
        with col2: # Bar Chart (Category Count)
            fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=px.colors.qualitative.Pastel)
            fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=30, b=10, l=10, r=10), height=350)
            st.plotly_chart(fig_bar_category, use_container_width=True)
        with col3: # Bar Chart (Most Frequent Entities)
            word_counts = df['text'].value_counts().reset_index()
            word_counts.columns = ['Entity', 'Count']
            repeating_entities = word_counts[word_counts['Count'] > 1].head(10)
            if not repeating_entities.empty:
                # Changed color_discrete_sequence
                fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis)
                fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=30, b=10, l=10, r=10), height=350)
                st.plotly_chart(fig_bar_freq, use_container_width=True)
            else:
                st.info("No entities repeat for frequency chart.")
        st.markdown("---")
        st.markdown("### 4. Entity Relationship Map")
        network_fig = generate_network_graph(df, st.session_state.last_text)
        st.plotly_chart(network_fig, use_container_width=True)
        st.markdown("---")
        st.markdown("### 5. Topic Modelling Analysis")
        if df_topic_data is not None and not df_topic_data.empty:
            bubble_figure = create_topic_word_bubbles(df_topic_data)
            if bubble_figure:
                st.plotly_chart(bubble_figure, use_container_width=True)
            else:
                st.error("Error generating Topic Word Bubble Chart.")
        else:
            st.info("Topic modeling requires more unique input (at least two unique entities).")
        # --- Report Download ---
        st.markdown("---")
        st.markdown("### Download Full Report Artifacts")
        # 1. HTML Report Download (Retained)
        html_report = generate_html_report(df, st.session_state.last_text, st.session_state.elapsed_time, df_topic_data)
        st.download_button(
            label="Download Comprehensive HTML Report",
            data=html_report,
            file_name="ner_topic_report.html",
            mime="text/html",
            type="primary"
        )

        # 2. CSV Data Download (NEW)
        csv_buffer = generate_entity_csv(df)
        st.download_button(
            label="Download Extracted Entities (CSV)",
            data=csv_buffer,
            file_name="extracted_entities.csv",
            mime="text/csv",
            type="secondary"
        )