Spaces:
Sleeping
Sleeping
| import os | |
| os.environ['HF_HOME'] = '/tmp' | |
| import time | |
| import streamlit as st | |
| import pandas as pd | |
| import io | |
| import plotly.express as px | |
| import zipfile | |
| import json | |
| import hashlib | |
| from typing import Optional | |
| from gliner import GLiNER | |
| from comet_ml import Experiment | |
| from streamlit_extras.stylable_container import stylable_container | |
| # --- Page Configuration and UI Elements --- | |
| st.set_page_config(layout="wide", page_title="NER") | |
| st.subheader("HR.ai", divider="green") | |
| st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") | |
| st.markdown( | |
| """ | |
| <style> | |
| /* Main app background and text color */ | |
| .stApp { | |
| background-color: #F5FFFA; /* Mint cream, a very light green */ | |
| color: #000000; /* Black for the text */ | |
| } | |
| /* Sidebar background color */ | |
| .css-1d36184 { | |
| background-color: #B2F2B2; /* A pale green for the sidebar */ | |
| secondary-background-color: #B2F2B2; | |
| } | |
| /* Expander background color and header */ | |
| .streamlit-expanderContent, .streamlit-expanderHeader { | |
| background-color: #F5FFFA; | |
| } | |
| /* Text Area background and text color */ | |
| .stTextArea textarea { | |
| background-color: #D4F4D4; /* A light, soft green */ | |
| color: #000000; /* Black for text */ | |
| } | |
| /* Text Input background and text color */ | |
| .stTextInput input { | |
| background-color: #D4F4D4; /* Same as the text area for consistency */ | |
| color: #000000; | |
| } | |
| /* Button background and text color */ | |
| .stButton > button { | |
| background-color: #D4F4D4; | |
| color: #000000; | |
| } | |
| /* Warning box background and text color */ | |
| .stAlert.st-warning { | |
| background-color: #C8F0C8; /* A light green for the warning box */ | |
| color: #000000; | |
| } | |
| /* Success box background and text color */ | |
| .stAlert.st-success { | |
| background-color: #C8F0C8; /* A light green for the success box */ | |
| color: #000000; | |
| } | |
| /* Tab color when active */ | |
| .stTabs [data-baseweb="tab-list"] button[aria-selected="true"] { | |
| background-color: #D4F4D4; | |
| color: #000000; | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True) | |
| expander = st.expander("**Important notes**") | |
| expander.write(""" **How to Use the HR.ai web app:** | |
| 1. Type or paste your text into the text area, then press Ctrl + Enter. | |
| 2. Click the 'Results' button to extract and tag entities in your text data. | |
| Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags. | |
| **How to Use the Question-Answering feature:** | |
| 1. Type or paste your text into the text area, then press Ctrl + Enter. | |
| 2. Click the 'Add Question' button to add your question to the Record of Questions. You can manage your questions by deleting them one by one. | |
| 3. Click the 'Extract Answers' button to extract the answer to your question. | |
| Results are presented in an easy-to-read table, visualized in an interactive tree map, and is available for download. | |
| **Entities:** "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill" | |
| **Usage Limits:** You can request results unlimited times for one (1) month. | |
| **Supported Languages:** English | |
| **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. | |
| For any errors or inquiries, please contact us at info@nlpblogs.com""") | |
| with st.sidebar: | |
| st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.") | |
| code = ''' | |
| <iframe | |
| src="https://aiecosystem-hr-ai.hf.space" | |
| frameborder="0" | |
| width="850" | |
| height="450" | |
| ></iframe> | |
| ''' | |
| st.code(code, language="html") | |
| st.text("") | |
| st.text("") | |
| st.subheader("🚀 Ready to build your own AI Web App?", divider="green") | |
| st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary") | |
| # --- Comet ML Setup --- | |
| COMET_API_KEY = os.environ.get("COMET_API_KEY") | |
| COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") | |
| COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") | |
| comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME) | |
| if not comet_initialized: | |
| st.warning("Comet ML not initialized. Check environment variables.") | |
| # --- Model Loading and Caching --- | |
| def load_gliner_model(model_name): | |
| """Initializes and caches the GLiNER model.""" | |
| try: | |
| if model_name == "HR_AI": | |
| return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels) | |
| elif model_name == "InfoFinder": | |
| return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", device="cpu") | |
| except Exception as e: | |
| st.error(f"Error loading the GLiNER model: {e}") | |
| st.stop() | |
| # --- HR_AI Model Labels and Mappings --- | |
| labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"] | |
| category_mapping = { | |
| "Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"], | |
| "Personal Details": ["Date_of_birth", "Marital_status", "Person"], | |
| "Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"], | |
| "Employment Information": ["Job_title", "Date", "Organization", "Role"], | |
| "Performance": ["Performance_score"], | |
| "Attendance": ["Leave_of_absence"], | |
| "Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"], | |
| "Compensation": ["Pay_rate", "Annual_salary"], | |
| "Deductions": ["Tax", "Deductions"], | |
| "Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"], | |
| "Legal & Compliance": ["Offer_letter", "Agreement"], | |
| "Professional_Development": ["Certification", "Skill"]} | |
| reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list} | |
| # --- InfoFinder Helpers --- | |
| if 'user_labels' not in st.session_state: | |
| st.session_state.user_labels = [] | |
| def get_stable_color(label): | |
| hash_object = hashlib.sha1(label.encode('utf-8')) | |
| hex_dig = hash_object.hexdigest() | |
| return '#' + hex_dig[:6] | |
| # --- Main App with Tabs --- | |
| tab1, tab2 = st.tabs(["HR.ai", "Question-Answering"]) | |
| with tab1: | |
| # Load model for this tab | |
| model_hr = load_gliner_model("HR_AI") | |
| # Define the word limit for this tab | |
| word_limit = 200 | |
| text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area_hr') | |
| # Calculate and display the word count | |
| word_count = len(text.split()) | |
| st.markdown(f"**Word count:** {word_count}/{word_limit}") | |
| def clear_text_hr(): | |
| st.session_state['my_text_area_hr'] = "" | |
| st.button("Clear text", on_click=clear_text_hr, key="clear_hr") | |
| if st.button("Results"): | |
| start_time = time.time() | |
| # Check for word limit and empty text | |
| if not text.strip(): | |
| st.warning("Please enter some text to extract entities.") | |
| elif word_count > word_limit: | |
| st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.") | |
| else: | |
| with st.spinner("Extracting entities...", show_time=True): | |
| entities = model_hr.predict_entities(text, labels) | |
| df = pd.DataFrame(entities) | |
| if not df.empty: | |
| df['category'] = df['label'].map(reverse_category_mapping) | |
| if comet_initialized: | |
| experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME) | |
| experiment.log_parameter("input_text", text) | |
| experiment.log_table("predicted_entities", df) | |
| st.subheader("Grouped Entities by Category", divider="green") | |
| category_names = sorted(list(category_mapping.keys())) | |
| category_tabs_hr = st.tabs(category_names) | |
| for i, category_name in enumerate(category_names): | |
| with category_tabs_hr[i]: | |
| df_category_filtered = df[df['category'] == category_name] | |
| if not df_category_filtered.empty: | |
| st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True) | |
| else: | |
| st.info(f"No entities found for the '{category_name}' category.") | |
| with st.expander("See Glossary of tags"): | |
| st.write(''' | |
| - **text**: ['entity extracted from your text data'] | |
| - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity'] | |
| - **label**: ['label (tag) assigned to a given extracted entity'] | |
| - **start**: ['index of the start of the corresponding entity'] | |
| - **end**: ['index of the end of the corresponding entity'] | |
| ''') | |
| st.divider() | |
| st.subheader("Candidate Card", divider="green") | |
| fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category') | |
| fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
| expander = st.expander("**Download**") | |
| expander.write(""" | |
| You can easily download the tree map by hovering over it. Look for the download icon that appears in the top right corner. | |
| """) | |
| st.plotly_chart(fig_treemap) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.subheader("Pie chart", divider="green") | |
| grouped_counts = df['category'].value_counts().reset_index() | |
| grouped_counts.columns = ['category', 'count'] | |
| fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories') | |
| fig_pie.update_traces(textposition='inside', textinfo='percent+label') | |
| fig_pie.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
| expander = st.expander("**Download**") | |
| expander.write(""" | |
| You can easily download the pie chart by hovering over it. Look for the download icon that appears in the top right corner. | |
| """) | |
| st.plotly_chart(fig_pie) | |
| with col2: | |
| st.subheader("Bar chart", divider="green") | |
| fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories') | |
| fig_bar.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
| expander = st.expander("**Download**") | |
| expander.write(""" | |
| You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner. | |
| """) | |
| st.plotly_chart(fig_bar) | |
| st.subheader("Most Frequent Entities", divider="green") | |
| word_counts = df['text'].value_counts().reset_index() | |
| word_counts.columns = ['Entity', 'Count'] | |
| repeating_entities = word_counts[word_counts['Count'] > 1] | |
| if not repeating_entities.empty: | |
| st.dataframe(repeating_entities, use_container_width=True) | |
| fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity') | |
| fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'}, paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
| expander = st.expander("**Download**") | |
| expander.write(""" | |
| You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner. | |
| """) | |
| st.plotly_chart(fig_repeating_bar) | |
| else: | |
| st.warning("No entities were found that occur more than once.") | |
| st.divider() | |
| dfa = pd.DataFrame(data={'Column Name': ['text', 'label', 'score', 'start', 'end'], 'Description': ['entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity', 'index of the start of the corresponding entity', 'index of the end of the corresponding entity']}) | |
| buf = io.BytesIO() | |
| with zipfile.ZipFile(buf, "w") as myzip: | |
| myzip.writestr("Summary of the results.csv", df.to_csv(index=False)) | |
| myzip.writestr("Most Frequent Entities.csv", repeating_entities.to_csv(index=False)) | |
| myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False)) | |
| with stylable_container( | |
| key="download_button", | |
| css_styles="""button { background-color: #008000; border: 1px solid black; padding: 5px; color: white; }""", | |
| ): | |
| st.download_button( | |
| label="Download results and glossary (zip)", | |
| data=buf.getvalue(), | |
| file_name="nlpblogs_results.zip", | |
| mime="application/zip", | |
| ) | |
| if comet_initialized: | |
| experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories") | |
| experiment.end() | |
| else: | |
| st.warning("No entities were found in the provided text.") | |
| end_time = time.time() | |
| elapsed_time = end_time - start_time | |
| st.text("") | |
| st.text("") | |
| st.info(f"Results processed in **{elapsed_time:.2f} seconds**.") | |
| with tab2: | |
| # Load model for this tab | |
| model_qa = load_gliner_model("InfoFinder") | |
| # Define the word limit for this tab | |
| word_limit_qa = 200 | |
| user_text = st.text_area(f"Type or paste your text below (max {word_limit_qa} words), and then press Ctrl + Enter", height=250, key='my_text_area_infofinder') | |
| # Calculate and display the word count | |
| word_count_qa = len(user_text.split()) | |
| st.markdown(f"**Word count:** {word_count_qa}/{word_limit_qa}") | |
| def clear_text_qa(): | |
| st.session_state['my_text_area_infofinder'] = "" | |
| st.button("Clear text", on_click=clear_text_qa, key="clear_qa") | |
| st.subheader("Question-Answering", divider="green") | |
| question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**") | |
| if st.button("Add Question"): | |
| if question_input: | |
| if question_input not in st.session_state.user_labels: | |
| st.session_state.user_labels.append(question_input) | |
| st.success(f"Added question: {question_input}") | |
| else: | |
| st.warning("This question has already been added.") | |
| else: | |
| st.warning("Please enter a question.") | |
| st.markdown("---") | |
| st.subheader("Record of Questions", divider="green") | |
| if st.session_state.user_labels: | |
| for i, label in enumerate(st.session_state.user_labels): | |
| col_list, col_delete = st.columns([0.9, 0.1]) | |
| with col_list: | |
| st.write(f"- {label}", key=f"label_{i}") | |
| with col_delete: | |
| if st.button("Delete", key=f"delete_{i}"): | |
| st.session_state.user_labels.pop(i) | |
| st.rerun() | |
| else: | |
| st.info("No questions defined yet. Use the input above to add one.") | |
| st.divider() | |
| if st.button("Extract Answers"): | |
| if not user_text.strip(): | |
| st.warning("Please enter some text to analyze.") | |
| elif word_count_qa > word_limit_qa: | |
| st.warning(f"Your text exceeds the {word_limit_qa} word limit. Please shorten it to continue.") | |
| elif not st.session_state.user_labels: | |
| st.warning("Please define at least one question.") | |
| else: | |
| if comet_initialized: | |
| experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME) | |
| experiment.log_parameter("input_text_length", len(user_text)) | |
| experiment.log_parameter("defined_labels", st.session_state.user_labels) | |
| start_time = time.time() | |
| with st.spinner("Analyzing text...", show_time=True): | |
| try: | |
| entities = model_qa.predict_entities(user_text, st.session_state.user_labels) | |
| end_time = time.time() | |
| elapsed_time = end_time - start_time | |
| st.info(f"Processing took **{elapsed_time:.2f} seconds**.") | |
| if entities: | |
| df1 = pd.DataFrame(entities) | |
| df2 = df1[['label', 'text', 'score']] | |
| df = df2.rename(columns={'label': 'question', 'text': 'answer'}) | |
| st.subheader("Extracted Answers", divider="green") | |
| expander = st.expander("**Download**") | |
| expander.write(""" | |
| To download the data, simply hover your cursor over the table. A download icon will appear in the top right corner. | |
| """) | |
| st.dataframe(df, use_container_width=True) | |
| st.subheader("Tree map", divider="green") | |
| all_labels = df['question'].unique() | |
| label_color_map = {label: get_stable_color(label) for label in all_labels} | |
| fig_treemap = px.treemap(df, path=[px.Constant("all"), 'question', 'answer'], values='score', color='question', color_discrete_map=label_color_map) | |
| fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F3E5F5', plot_bgcolor='#F3E5F5') | |
| expander = st.expander("**Download**") | |
| expander.write(""" | |
| You can easily download the treemap by hovering over it. Look for the download icon that appears in the top right corner. | |
| """) | |
| st.plotly_chart(fig_treemap) | |
| if comet_initialized: | |
| experiment.log_metric("processing_time_seconds", elapsed_time) | |
| experiment.log_table("predicted_entities", df) | |
| experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap") | |
| experiment.end() | |
| else: | |
| st.info("No answers were found in the text with the defined questions.") | |
| if comet_initialized: | |
| experiment.end() | |
| except Exception as e: | |
| st.error(f"An error occurred during processing: {e}") | |
| st.write(f"Error details: {e}") | |
| if comet_initialized: | |
| experiment.log_text(f"Error: {e}") | |
| experiment.end() | |