File size: 21,077 Bytes
0b88ebc
0062d79
4d27e51
6390634
4d27e51
 
 
 
67bfd5c
97d4895
4d27e51
 
 
4c657db
 
4d27e51
57333a9
39955bd
 
97d4895
4d27e51
 
 
39955bd
4d27e51
39955bd
 
4d27e51
39955bd
4d27e51
39955bd
4d27e51
 
39955bd
 
4d27e51
 
39955bd
4d27e51
39955bd
 
4d27e51
39955bd
97d4895
39955bd
 
ab3fa57
39955bd
4d27e51
 
 
 
39955bd
4d27e51
39955bd
4d27e51
 
39955bd
4d27e51
39955bd
4d27e51
 
39955bd
 
 
 
 
4d27e51
 
b8cd831
370aed6
3df04ae
 
 
 
 
 
 
 
 
 
 
 
 
 
95681ef
 
 
3df04ae
 
 
 
 
 
 
4d27e51
95681ef
4d27e51
97d4895
 
 
 
 
 
4d27e51
 
 
 
d5574f7
66eafe1
be0ca03
4d27e51
 
 
 
 
 
 
97d4895
5d46ed5
97d4895
 
 
 
adcc12e
97d4895
bb99ec1
97d4895
 
 
 
0b5f772
4d27e51
8cfe42f
 
 
0b5f772
8cfe42f
 
 
 
 
 
 
b8cd831
97d4895
 
 
 
 
 
 
 
 
0b5f772
97d4895
 
 
b8cd831
3df04ae
b8cd831
 
3df04ae
b8cd831
 
 
 
 
97d4895
 
b8cd831
97d4895
b8cd831
002ac5e
97d4895
b8cd831
 
97d4895
 
b8cd831
 
1267c7f
97d4895
 
 
 
 
 
 
 
 
939f498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510a152
 
 
 
939f498
 
 
 
 
 
 
 
 
446c0b7
 
 
 
939f498
 
 
 
 
446c0b7
 
 
 
939f498
 
 
 
 
 
 
 
 
d5574f7
 
 
 
939f498
 
 
 
7195ed6
97d4895
 
 
510a152
97d4895
e890a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939f498
 
 
97d4895
 
939f498
 
 
 
 
d83d227
97d4895
 
3df04ae
 
42deb60
3df04ae
 
 
 
 
 
 
97d4895
 
3df04ae
97d4895
0b5f772
97d4895
 
 
 
 
 
 
 
 
 
 
39955bd
97d4895
 
 
 
 
 
 
 
 
1267c7f
97d4895
 
 
 
 
3df04ae
 
97d4895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939f498
25fae57
b8cd831
446c0b7
25fae57
939f498
 
 
 
 
 
446c0b7
 
 
 
939f498
97d4895
 
 
939f498
 
97d4895
939f498
 
 
97d4895
 
 
8f31f8b
939f498
cf73d53
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import json
import hashlib
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment
from streamlit_extras.stylable_container import stylable_container


# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="NER")
st.subheader("HR.ai", divider="green")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
st.markdown(
    """
    <style>
    /* Main app background and text color */
    .stApp {
        background-color: #F5FFFA; /* Mint cream, a very light green */
        color: #000000; /* Black for the text */
    }
    /* Sidebar background color */
    .css-1d36184 {
        background-color: #B2F2B2; /* A pale green for the sidebar */
        secondary-background-color: #B2F2B2;
    }
    /* Expander background color and header */
    .streamlit-expanderContent, .streamlit-expanderHeader {
        background-color: #F5FFFA;
    }
    /* Text Area background and text color */
    .stTextArea textarea {
        background-color: #D4F4D4; /* A light, soft green */
        color: #000000; /* Black for text */
    }
    /* Text Input background and text color */
    .stTextInput input {
        background-color: #D4F4D4; /* Same as the text area for consistency */
        color: #000000;
    }
    /* Button background and text color */
    .stButton > button {
        background-color: #D4F4D4;
        color: #000000;
    }
    /* Warning box background and text color */
    .stAlert.st-warning {
        background-color: #C8F0C8; /* A light green for the warning box */
        color: #000000;
    }
    /* Success box background and text color */
    .stAlert.st-success {
        background-color: #C8F0C8; /* A light green for the success box */
        color: #000000;
    }
    /* Tab color when active */
    .stTabs [data-baseweb="tab-list"] button[aria-selected="true"] {
        background-color: #D4F4D4;
        color: #000000;
    }
    </style>
    """,
    unsafe_allow_html=True)
expander = st.expander("**Important notes**")
expander.write(""" **How to Use the HR.ai web app:** 

1. Type or paste your text into the text area, then press Ctrl + Enter.
2. Click the 'Results' button to extract and tag entities in your text data. 
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.      

**How to Use the Question-Answering feature:**

1. Type or paste your text into the text area, then press Ctrl + Enter. 
2. Click the 'Add Question' button to add your question to the Record of Questions. You can manage your questions by deleting them one by one.
3. Click the 'Extract Answers' button to extract the answer to your question.

Results are presented in an easy-to-read table, visualized in an interactive tree map, and is available for download.   

**Entities:** "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"

**Usage Limits:** You can request results unlimited times for one (1) month.      

**Supported Languages:** English     

**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. 

For any errors or inquiries, please contact us at info@nlpblogs.com""")

with st.sidebar:
    st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
    code = '''
    <iframe
    src="https://aiecosystem-hr-ai.hf.space"
    frameborder="0"
    width="850"
    height="450"
    ></iframe>
    '''
    st.code(code, language="html")
    st.text("")
    st.text("")
    
    st.subheader("πŸš€ Ready to build your own AI Web App?", divider="green")
    st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
    st.warning("Comet ML not initialized. Check environment variables.")
# --- Model Loading and Caching ---
@st.cache_resource
def load_gliner_model(model_name):
    """Initializes and caches the GLiNER model."""
    try:
        if model_name == "HR_AI":
            return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
        elif model_name == "InfoFinder":
            return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", device="cpu")
    except Exception as e:
        st.error(f"Error loading the GLiNER model: {e}")
        st.stop()
# --- HR_AI Model Labels and Mappings ---
labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
category_mapping = {
    "Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
    "Personal Details": ["Date_of_birth", "Marital_status", "Person"],
    "Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"],
    "Employment Information": ["Job_title", "Date", "Organization", "Role"],
    "Performance": ["Performance_score"],
    "Attendance": ["Leave_of_absence"],
    "Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
    "Compensation": ["Pay_rate", "Annual_salary"],
    "Deductions": ["Tax", "Deductions"],
    "Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"],
    "Legal & Compliance": ["Offer_letter", "Agreement"],
    "Professional_Development": ["Certification", "Skill"]}
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
# --- InfoFinder Helpers ---
if 'user_labels' not in st.session_state:
    st.session_state.user_labels = []
def get_stable_color(label):
    hash_object = hashlib.sha1(label.encode('utf-8'))
    hex_dig = hash_object.hexdigest()
    return '#' + hex_dig[:6]
# --- Main App with Tabs ---
tab1, tab2 = st.tabs(["HR.ai", "Question-Answering"])
with tab1:
    # Load model for this tab
    model_hr = load_gliner_model("HR_AI")
    
    # Define the word limit for this tab
    word_limit = 200
    
    text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area_hr')
    
    # Calculate and display the word count
    word_count = len(text.split())
    st.markdown(f"**Word count:** {word_count}/{word_limit}")
    
    def clear_text_hr():
        st.session_state['my_text_area_hr'] = ""
    
    st.button("Clear text", on_click=clear_text_hr, key="clear_hr")
    
    if st.button("Results"):
        start_time = time.time()
        
        # Check for word limit and empty text
        if not text.strip():
            st.warning("Please enter some text to extract entities.")
        elif word_count > word_limit:
            st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
        else:
            with st.spinner("Extracting entities...", show_time=True):
                entities = model_hr.predict_entities(text, labels)
                df = pd.DataFrame(entities)
                if not df.empty:
                    df['category'] = df['label'].map(reverse_category_mapping)
                    if comet_initialized:
                        experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
                        experiment.log_parameter("input_text", text)
                        experiment.log_table("predicted_entities", df)
                    st.subheader("Grouped Entities by Category", divider="green")
                    category_names = sorted(list(category_mapping.keys()))
                    category_tabs_hr = st.tabs(category_names)
                    for i, category_name in enumerate(category_names):
                        with category_tabs_hr[i]:
                            df_category_filtered = df[df['category'] == category_name]
                            if not df_category_filtered.empty:
                                st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
                            else:
                                st.info(f"No entities found for the '{category_name}' category.")
                    with st.expander("See Glossary of tags"):
                        st.write('''
                        - **text**: ['entity extracted from your text data']
                        - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
                        - **label**: ['label (tag) assigned to a given extracted entity']
                        - **start**: ['index of the start of the corresponding entity']
                        - **end**: ['index of the end of the corresponding entity']
                        ''')
                    st.divider()
                    st.subheader("Candidate Card", divider="green")
                    fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
                    fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
                    expander = st.expander("**Download**")
                    expander.write("""
                    You can easily download the tree map by hovering over it. Look for the download icon that appears in the top right corner.
                    """)
                    st.plotly_chart(fig_treemap)
                    col1, col2 = st.columns(2)
                    with col1:
                        st.subheader("Pie chart", divider="green")
                        grouped_counts = df['category'].value_counts().reset_index()
                        grouped_counts.columns = ['category', 'count']
                        fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
                        fig_pie.update_traces(textposition='inside', textinfo='percent+label')
                        fig_pie.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
                        expander = st.expander("**Download**")
                        expander.write("""
                        You can easily download the pie chart by hovering over it. Look for the download icon that appears in the top right corner.
                        """)
                        st.plotly_chart(fig_pie)
                    with col2:
                        st.subheader("Bar chart", divider="green")
                        fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
                        fig_bar.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
                        expander = st.expander("**Download**")
                        expander.write("""
                        You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
                        """)
                        st.plotly_chart(fig_bar)
                    st.subheader("Most Frequent Entities", divider="green")
                    word_counts = df['text'].value_counts().reset_index()
                    word_counts.columns = ['Entity', 'Count']
                    repeating_entities = word_counts[word_counts['Count'] > 1]
                    if not repeating_entities.empty:
                        st.dataframe(repeating_entities, use_container_width=True)
                        fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
                        fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'}, paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
                        expander = st.expander("**Download**")
                        expander.write("""
                        You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
                        """)
                        st.plotly_chart(fig_repeating_bar)
                    else:
                        st.warning("No entities were found that occur more than once.")
                    st.divider()
                    dfa = pd.DataFrame(data={'Column Name': ['text', 'label', 'score', 'start', 'end'], 'Description': ['entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity', 'index of the start of the corresponding entity', 'index of the end of the corresponding entity']})
                    buf = io.BytesIO()
                    with zipfile.ZipFile(buf, "w") as myzip:
                        myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
                        myzip.writestr("Most Frequent Entities.csv", repeating_entities.to_csv(index=False))
                        myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
                    
                    with stylable_container(
                        key="download_button",
                        css_styles="""button { background-color: #008000; border: 1px solid black; padding: 5px; color: white; }""",
                    ):
                        st.download_button(
                            label="Download results and glossary (zip)",
                            data=buf.getvalue(),
                            file_name="nlpblogs_results.zip",
                            mime="application/zip",
                        )
                    
                    
                    
                    
                    if comet_initialized:
                        experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
                        experiment.end()
                else:
                    st.warning("No entities were found in the provided text.")
            end_time = time.time()
            elapsed_time = end_time - start_time
            st.text("")
            st.text("")
            st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
with tab2:
    # Load model for this tab
    model_qa = load_gliner_model("InfoFinder")
    
    # Define the word limit for this tab
    word_limit_qa = 200
    
    user_text = st.text_area(f"Type or paste your text below (max {word_limit_qa} words), and then press Ctrl + Enter", height=250, key='my_text_area_infofinder')
    
    # Calculate and display the word count
    word_count_qa = len(user_text.split())
    st.markdown(f"**Word count:** {word_count_qa}/{word_limit_qa}")
    
    def clear_text_qa():
        st.session_state['my_text_area_infofinder'] = ""
    
    st.button("Clear text", on_click=clear_text_qa, key="clear_qa")
    st.subheader("Question-Answering", divider="green")
    question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
    if st.button("Add Question"):
        if question_input:
            if question_input not in st.session_state.user_labels:
                st.session_state.user_labels.append(question_input)
                st.success(f"Added question: {question_input}")
            else:
                st.warning("This question has already been added.")
        else:
            st.warning("Please enter a question.")
    st.markdown("---")
    st.subheader("Record of Questions", divider="green")
    if st.session_state.user_labels:
        for i, label in enumerate(st.session_state.user_labels):
            col_list, col_delete = st.columns([0.9, 0.1])
            with col_list:
                st.write(f"- {label}", key=f"label_{i}")
            with col_delete:
                if st.button("Delete", key=f"delete_{i}"):
                    st.session_state.user_labels.pop(i)
                    st.rerun()
    else:
        st.info("No questions defined yet. Use the input above to add one.")
    st.divider()
    if st.button("Extract Answers"):
        if not user_text.strip():
            st.warning("Please enter some text to analyze.")
        elif word_count_qa > word_limit_qa:
            st.warning(f"Your text exceeds the {word_limit_qa} word limit. Please shorten it to continue.")
        elif not st.session_state.user_labels:
            st.warning("Please define at least one question.")
        else:
            if comet_initialized:
                experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
                experiment.log_parameter("input_text_length", len(user_text))
                experiment.log_parameter("defined_labels", st.session_state.user_labels)
            start_time = time.time()
            with st.spinner("Analyzing text...", show_time=True):
                try:
                    entities = model_qa.predict_entities(user_text, st.session_state.user_labels)
                    end_time = time.time()
                    elapsed_time = end_time - start_time
                    st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
                    if entities:
                        df1 = pd.DataFrame(entities)
                        df2 = df1[['label', 'text', 'score']]
                        df = df2.rename(columns={'label': 'question', 'text': 'answer'})
                        st.subheader("Extracted Answers", divider="green")
                        expander = st.expander("**Download**")
                        expander.write("""
                        To download the data, simply hover your cursor over the table. A download icon will appear in the top right corner.
                        """)
                        st.dataframe(df, use_container_width=True)
                        st.subheader("Tree map", divider="green")
                        all_labels = df['question'].unique()
                        label_color_map = {label: get_stable_color(label) for label in all_labels}
                        fig_treemap = px.treemap(df, path=[px.Constant("all"), 'question', 'answer'], values='score', color='question', color_discrete_map=label_color_map)
                        fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F3E5F5', plot_bgcolor='#F3E5F5')
                        expander = st.expander("**Download**")
                        expander.write("""
                        You can easily download the treemap by hovering over it. Look for the download icon that appears in the top right corner.
                        """)
                        st.plotly_chart(fig_treemap)
                        if comet_initialized:
                            experiment.log_metric("processing_time_seconds", elapsed_time)
                            experiment.log_table("predicted_entities", df)
                            experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
                            experiment.end()
                    else:
                        st.info("No answers were found in the text with the defined questions.")
                        if comet_initialized:
                            experiment.end()
                except Exception as e:
                    st.error(f"An error occurred during processing: {e}")
                    st.write(f"Error details: {e}")
                    if comet_initialized:
                        experiment.log_text(f"Error: {e}")
                        experiment.end()