Spaces:
Sleeping
Sleeping
File size: 21,077 Bytes
0b88ebc 0062d79 4d27e51 6390634 4d27e51 67bfd5c 97d4895 4d27e51 4c657db 4d27e51 57333a9 39955bd 97d4895 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 97d4895 39955bd ab3fa57 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 39955bd 4d27e51 b8cd831 370aed6 3df04ae 95681ef 3df04ae 4d27e51 95681ef 4d27e51 97d4895 4d27e51 d5574f7 66eafe1 be0ca03 4d27e51 97d4895 5d46ed5 97d4895 adcc12e 97d4895 bb99ec1 97d4895 0b5f772 4d27e51 8cfe42f 0b5f772 8cfe42f b8cd831 97d4895 0b5f772 97d4895 b8cd831 3df04ae b8cd831 3df04ae b8cd831 97d4895 b8cd831 97d4895 b8cd831 002ac5e 97d4895 b8cd831 97d4895 b8cd831 1267c7f 97d4895 939f498 510a152 939f498 446c0b7 939f498 446c0b7 939f498 d5574f7 939f498 7195ed6 97d4895 510a152 97d4895 e890a6f 939f498 97d4895 939f498 d83d227 97d4895 3df04ae 42deb60 3df04ae 97d4895 3df04ae 97d4895 0b5f772 97d4895 39955bd 97d4895 1267c7f 97d4895 3df04ae 97d4895 939f498 25fae57 b8cd831 446c0b7 25fae57 939f498 446c0b7 939f498 97d4895 939f498 97d4895 939f498 97d4895 8f31f8b 939f498 cf73d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import json
import hashlib
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment
from streamlit_extras.stylable_container import stylable_container
# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="NER")
st.subheader("HR.ai", divider="green")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
st.markdown(
"""
<style>
/* Main app background and text color */
.stApp {
background-color: #F5FFFA; /* Mint cream, a very light green */
color: #000000; /* Black for the text */
}
/* Sidebar background color */
.css-1d36184 {
background-color: #B2F2B2; /* A pale green for the sidebar */
secondary-background-color: #B2F2B2;
}
/* Expander background color and header */
.streamlit-expanderContent, .streamlit-expanderHeader {
background-color: #F5FFFA;
}
/* Text Area background and text color */
.stTextArea textarea {
background-color: #D4F4D4; /* A light, soft green */
color: #000000; /* Black for text */
}
/* Text Input background and text color */
.stTextInput input {
background-color: #D4F4D4; /* Same as the text area for consistency */
color: #000000;
}
/* Button background and text color */
.stButton > button {
background-color: #D4F4D4;
color: #000000;
}
/* Warning box background and text color */
.stAlert.st-warning {
background-color: #C8F0C8; /* A light green for the warning box */
color: #000000;
}
/* Success box background and text color */
.stAlert.st-success {
background-color: #C8F0C8; /* A light green for the success box */
color: #000000;
}
/* Tab color when active */
.stTabs [data-baseweb="tab-list"] button[aria-selected="true"] {
background-color: #D4F4D4;
color: #000000;
}
</style>
""",
unsafe_allow_html=True)
expander = st.expander("**Important notes**")
expander.write(""" **How to Use the HR.ai web app:**
1. Type or paste your text into the text area, then press Ctrl + Enter.
2. Click the 'Results' button to extract and tag entities in your text data.
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
**How to Use the Question-Answering feature:**
1. Type or paste your text into the text area, then press Ctrl + Enter.
2. Click the 'Add Question' button to add your question to the Record of Questions. You can manage your questions by deleting them one by one.
3. Click the 'Extract Answers' button to extract the answer to your question.
Results are presented in an easy-to-read table, visualized in an interactive tree map, and is available for download.
**Entities:** "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"
**Usage Limits:** You can request results unlimited times for one (1) month.
**Supported Languages:** English
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at info@nlpblogs.com""")
with st.sidebar:
st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
code = '''
<iframe
src="https://aiecosystem-hr-ai.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
'''
st.code(code, language="html")
st.text("")
st.text("")
st.subheader("π Ready to build your own AI Web App?", divider="green")
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables.")
# --- Model Loading and Caching ---
@st.cache_resource
def load_gliner_model(model_name):
"""Initializes and caches the GLiNER model."""
try:
if model_name == "HR_AI":
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
elif model_name == "InfoFinder":
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", device="cpu")
except Exception as e:
st.error(f"Error loading the GLiNER model: {e}")
st.stop()
# --- HR_AI Model Labels and Mappings ---
labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
category_mapping = {
"Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
"Personal Details": ["Date_of_birth", "Marital_status", "Person"],
"Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"],
"Employment Information": ["Job_title", "Date", "Organization", "Role"],
"Performance": ["Performance_score"],
"Attendance": ["Leave_of_absence"],
"Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
"Compensation": ["Pay_rate", "Annual_salary"],
"Deductions": ["Tax", "Deductions"],
"Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"],
"Legal & Compliance": ["Offer_letter", "Agreement"],
"Professional_Development": ["Certification", "Skill"]}
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
# --- InfoFinder Helpers ---
if 'user_labels' not in st.session_state:
st.session_state.user_labels = []
def get_stable_color(label):
hash_object = hashlib.sha1(label.encode('utf-8'))
hex_dig = hash_object.hexdigest()
return '#' + hex_dig[:6]
# --- Main App with Tabs ---
tab1, tab2 = st.tabs(["HR.ai", "Question-Answering"])
with tab1:
# Load model for this tab
model_hr = load_gliner_model("HR_AI")
# Define the word limit for this tab
word_limit = 200
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area_hr')
# Calculate and display the word count
word_count = len(text.split())
st.markdown(f"**Word count:** {word_count}/{word_limit}")
def clear_text_hr():
st.session_state['my_text_area_hr'] = ""
st.button("Clear text", on_click=clear_text_hr, key="clear_hr")
if st.button("Results"):
start_time = time.time()
# Check for word limit and empty text
if not text.strip():
st.warning("Please enter some text to extract entities.")
elif word_count > word_limit:
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
else:
with st.spinner("Extracting entities...", show_time=True):
entities = model_hr.predict_entities(text, labels)
df = pd.DataFrame(entities)
if not df.empty:
df['category'] = df['label'].map(reverse_category_mapping)
if comet_initialized:
experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
st.subheader("Grouped Entities by Category", divider="green")
category_names = sorted(list(category_mapping.keys()))
category_tabs_hr = st.tabs(category_names)
for i, category_name in enumerate(category_names):
with category_tabs_hr[i]:
df_category_filtered = df[df['category'] == category_name]
if not df_category_filtered.empty:
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
else:
st.info(f"No entities found for the '{category_name}' category.")
with st.expander("See Glossary of tags"):
st.write('''
- **text**: ['entity extracted from your text data']
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
- **label**: ['label (tag) assigned to a given extracted entity']
- **start**: ['index of the start of the corresponding entity']
- **end**: ['index of the end of the corresponding entity']
''')
st.divider()
st.subheader("Candidate Card", divider="green")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
expander = st.expander("**Download**")
expander.write("""
You can easily download the tree map by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_treemap)
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie chart", divider="green")
grouped_counts = df['category'].value_counts().reset_index()
grouped_counts.columns = ['category', 'count']
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
fig_pie.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
expander = st.expander("**Download**")
expander.write("""
You can easily download the pie chart by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_pie)
with col2:
st.subheader("Bar chart", divider="green")
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
fig_bar.update_layout(paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
expander = st.expander("**Download**")
expander.write("""
You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_bar)
st.subheader("Most Frequent Entities", divider="green")
word_counts = df['text'].value_counts().reset_index()
word_counts.columns = ['Entity', 'Count']
repeating_entities = word_counts[word_counts['Count'] > 1]
if not repeating_entities.empty:
st.dataframe(repeating_entities, use_container_width=True)
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'}, paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
expander = st.expander("**Download**")
expander.write("""
You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_repeating_bar)
else:
st.warning("No entities were found that occur more than once.")
st.divider()
dfa = pd.DataFrame(data={'Column Name': ['text', 'label', 'score', 'start', 'end'], 'Description': ['entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity', 'index of the start of the corresponding entity', 'index of the end of the corresponding entity']})
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Most Frequent Entities.csv", repeating_entities.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: #008000; border: 1px solid black; padding: 5px; color: white; }""",
):
st.download_button(
label="Download results and glossary (zip)",
data=buf.getvalue(),
file_name="nlpblogs_results.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
experiment.end()
else:
st.warning("No entities were found in the provided text.")
end_time = time.time()
elapsed_time = end_time - start_time
st.text("")
st.text("")
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
with tab2:
# Load model for this tab
model_qa = load_gliner_model("InfoFinder")
# Define the word limit for this tab
word_limit_qa = 200
user_text = st.text_area(f"Type or paste your text below (max {word_limit_qa} words), and then press Ctrl + Enter", height=250, key='my_text_area_infofinder')
# Calculate and display the word count
word_count_qa = len(user_text.split())
st.markdown(f"**Word count:** {word_count_qa}/{word_limit_qa}")
def clear_text_qa():
st.session_state['my_text_area_infofinder'] = ""
st.button("Clear text", on_click=clear_text_qa, key="clear_qa")
st.subheader("Question-Answering", divider="green")
question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
if st.button("Add Question"):
if question_input:
if question_input not in st.session_state.user_labels:
st.session_state.user_labels.append(question_input)
st.success(f"Added question: {question_input}")
else:
st.warning("This question has already been added.")
else:
st.warning("Please enter a question.")
st.markdown("---")
st.subheader("Record of Questions", divider="green")
if st.session_state.user_labels:
for i, label in enumerate(st.session_state.user_labels):
col_list, col_delete = st.columns([0.9, 0.1])
with col_list:
st.write(f"- {label}", key=f"label_{i}")
with col_delete:
if st.button("Delete", key=f"delete_{i}"):
st.session_state.user_labels.pop(i)
st.rerun()
else:
st.info("No questions defined yet. Use the input above to add one.")
st.divider()
if st.button("Extract Answers"):
if not user_text.strip():
st.warning("Please enter some text to analyze.")
elif word_count_qa > word_limit_qa:
st.warning(f"Your text exceeds the {word_limit_qa} word limit. Please shorten it to continue.")
elif not st.session_state.user_labels:
st.warning("Please define at least one question.")
else:
if comet_initialized:
experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
experiment.log_parameter("input_text_length", len(user_text))
experiment.log_parameter("defined_labels", st.session_state.user_labels)
start_time = time.time()
with st.spinner("Analyzing text...", show_time=True):
try:
entities = model_qa.predict_entities(user_text, st.session_state.user_labels)
end_time = time.time()
elapsed_time = end_time - start_time
st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
if entities:
df1 = pd.DataFrame(entities)
df2 = df1[['label', 'text', 'score']]
df = df2.rename(columns={'label': 'question', 'text': 'answer'})
st.subheader("Extracted Answers", divider="green")
expander = st.expander("**Download**")
expander.write("""
To download the data, simply hover your cursor over the table. A download icon will appear in the top right corner.
""")
st.dataframe(df, use_container_width=True)
st.subheader("Tree map", divider="green")
all_labels = df['question'].unique()
label_color_map = {label: get_stable_color(label) for label in all_labels}
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'question', 'answer'], values='score', color='question', color_discrete_map=label_color_map)
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F3E5F5', plot_bgcolor='#F3E5F5')
expander = st.expander("**Download**")
expander.write("""
You can easily download the treemap by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_treemap)
if comet_initialized:
experiment.log_metric("processing_time_seconds", elapsed_time)
experiment.log_table("predicted_entities", df)
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
experiment.end()
else:
st.info("No answers were found in the text with the defined questions.")
if comet_initialized:
experiment.end()
except Exception as e:
st.error(f"An error occurred during processing: {e}")
st.write(f"Error details: {e}")
if comet_initialized:
experiment.log_text(f"Error: {e}")
experiment.end()
|