AItool's picture
Update app.py
e179439 verified
raw
history blame
3.05 kB
# app.py
# Requirements: transformers, torch, sentencepiece, sacremoses, gradio
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, MarianMTModel, MarianTokenizer
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_OPTIONS = [
"FLAN-T5-base (Google en→en)",
"Round-trip OPUS-MT en→es→en (Helsinki-NLP)"
]
# Cache
CACHE = {}
# --- FLAN loader ---
def load_flan():
if "flan" not in CACHE:
tok = AutoTokenizer.from_pretrained("google/flan-t5-base")
mdl = AutoModelForSeq2SeqLM.from_pretrained(
"google/flan-t5-base",
low_cpu_mem_usage=True,
torch_dtype="auto"
).to(DEVICE)
CACHE["flan"] = (mdl, tok)
return CACHE["flan"]
def run_flan(sentence: str) -> str:
model, tok = load_flan()
prompt = f"Correct grammar and rewrite in fluent British English: {sentence}"
inputs = tok(prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
out = model.generate(**inputs, max_new_tokens=96, num_beams=4)
return tok.decode(out[0], skip_special_tokens=True).strip()
# --- Marian round-trip loader ---
def load_marian():
if "en_es" not in CACHE:
tok1 = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-es")
mdl1 = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-es").to(DEVICE)
tok2 = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-es-en")
mdl2 = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-es-en").to(DEVICE)
CACHE["en_es"] = (mdl1, tok1, mdl2, tok2)
return CACHE["en_es"]
def run_roundtrip(sentence: str) -> str:
mdl1, tok1, mdl2, tok2 = load_marian()
# English → Spanish
inputs = tok1(sentence, return_tensors="pt").to(DEVICE)
es_tokens = mdl1.generate(**inputs, max_length=128, num_beams=4)
spanish = tok1.decode(es_tokens[0], skip_special_tokens=True)
# Spanish → English
inputs2 = tok2(spanish, return_tensors="pt").to(DEVICE)
en_tokens = mdl2.generate(**inputs2, max_length=128, num_beams=4)
english = tok2.decode(en_tokens[0], skip_special_tokens=True)
return english.strip()
# --- Dispatcher ---
def polish(sentence: str, choice: str) -> str:
if not sentence.strip():
return ""
if choice.startswith("FLAN"):
return run_flan(sentence)
elif choice.startswith("Round-trip"):
return run_roundtrip(sentence)
else:
return "Unknown option."
# --- Gradio UI ---
with gr.Blocks(title="English Grammar Polisher") as demo:
gr.Markdown("### English Grammar Polisher\nChoose FLAN-T5 (Google) or OPUS-MT round-trip (Helsinki-NLP).")
inp = gr.Textbox(lines=3, label="Input (English)", placeholder="Type a sentence…")
choice = gr.Dropdown(choices=MODEL_OPTIONS, value="FLAN-T5-base (Google en→en)", label="Method")
btn = gr.Button("Polish")
out = gr.Textbox(label="Output")
btn.click(polish, inputs=[inp, choice], outputs=out)
if __name__ == "__main__":
demo.launch()