File size: 5,854 Bytes
b4123b8
91a7a12
b4123b8
 
 
 
91a7a12
b4123b8
 
 
 
dd1d7f5
b4123b8
 
 
dd1d7f5
 
b4123b8
 
 
91a7a12
b4123b8
dd1d7f5
91a7a12
 
dd1d7f5
b4123b8
91a7a12
 
 
 
dd1d7f5
 
 
b4123b8
dffab99
b4123b8
dd1d7f5
b4123b8
 
 
 
 
91a7a12
b4123b8
dd1d7f5
91a7a12
 
b4123b8
91a7a12
 
b4123b8
91a7a12
 
 
 
 
 
 
 
b4123b8
91a7a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4123b8
91a7a12
 
b4123b8
91a7a12
2c0bae7
91a7a12
2c0bae7
 
 
 
b4123b8
 
dd1d7f5
10bba96
b4123b8
dd1d7f5
 
c170961
 
10bba96
c170961
 
 
31ddfa7
c170961
 
 
 
 
 
 
 
 
 
 
 
 
 
91a7a12
 
 
 
 
 
31ddfa7
 
 
b4123b8
91a7a12
b4123b8
91a7a12
 
 
c170961
91a7a12
 
 
b4123b8
31ddfa7
91a7a12
 
 
 
 
 
 
 
b4123b8
91a7a12
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Minimal single-image pipeline for Hugging Face demo.
"""

import logging
from pathlib import Path
from typing import Dict, Any
import numpy as np
import cv2

from .config import Config
from .data import ImagePreprocessor, MaskHandler
from .features import TextureExtractor, VegetationIndexExtractor, MorphologyExtractor
from .output import OutputManager
from .segmentation import SegmentationManager

logger = logging.getLogger(__name__)


class SorghumPipeline:
    """Minimal pipeline for single-image processing."""
    
    def __init__(self, config: Config):
        """Initialize pipeline."""
        logging.basicConfig(level=logging.INFO, format='%(levelname)s - %(message)s')
        self.config = config
        self.config.validate()
        
        # Initialize components with defaults
        self.preprocessor = ImagePreprocessor()
        self.mask_handler = MaskHandler()
        self.texture_extractor = TextureExtractor()
        self.vegetation_extractor = VegetationIndexExtractor()
        self.morphology_extractor = MorphologyExtractor()
        self.segmentation_manager = SegmentationManager(
            model_name="briaai/RMBG-2.0",
            device=self.config.get_device(),
            trust_remote_code=True
        )
        self.output_manager = OutputManager(
            output_folder=self.config.paths.output_folder,
            settings=self.config.output
        )
        logger.info("Pipeline initialized")

    def run(self, single_image_path: str) -> Dict[str, Any]:
        """Run pipeline on single image."""
        logger.info("Processing single image...")
        
        from PIL import Image
        import time
        
        start = time.perf_counter()
        
        # Load image
        img = Image.open(single_image_path)
        plants = {
            "demo": {
                "raw_image": (img, Path(single_image_path).name),
                "plant_name": "demo",
            }
        }
        
        # Process: composite → segment → features → save
        plants = self.preprocessor.create_composites(plants)
        plants = self._segment(plants)
        plants = self._extract_features(plants)
        self.output_manager.create_output_directories()
        
        for key, pdata in plants.items():
            self.output_manager.save_plant_results(key, pdata)
        
        elapsed = time.perf_counter() - start
        logger.info(f"Completed in {elapsed:.2f}s")
        
        return {"plants": plants, "timing": elapsed}

    def _segment(self, plants: Dict[str, Any]) -> Dict[str, Any]:
        """Segment using BRIA."""
        for key, pdata in plants.items():
            composite = pdata['composite']
            logger.info(f"Composite shape: {composite.shape}")
            soft_mask = self.segmentation_manager.segment_image_soft(composite)
            logger.info(f"Soft mask shape: {soft_mask.shape}")
            mask_uint8 = (soft_mask * 255.0).astype(np.uint8)
            logger.info(f"Mask uint8 shape: {mask_uint8.shape}")
            pdata['mask'] = mask_uint8
        return plants
    
    def _extract_features(self, plants: Dict[str, Any]) -> Dict[str, Any]:
        """Extract features (NDVI only for now)."""
        for key, pdata in plants.items():
            composite = pdata['composite']
            mask = pdata.get('mask')

            # Texture: ONLY LBP on green band within mask
            pdata['texture_features'] = {}
            green_band = None
            spectral = pdata.get('spectral_stack', {})
            if 'green' in spectral:
                green_band = spectral['green'].squeeze(-1).astype(np.float64)
                if mask is not None:
                    valid = np.where(mask > 0, green_band, np.nan)
                else:
                    valid = green_band
                # normalize to uint8 for LBP
                v = valid.copy()
                v = np.nan_to_num(v, nan=np.nanmin(v))
                m, M = np.min(v), np.max(v)
                denom = (M - m) if (M - m) > 1e-6 else 1.0
                gray8 = ((v - m) / denom * 255.0).astype(np.uint8)
                lbp_map = self.texture_extractor.extract_lbp(gray8)
                pdata['texture_features'] = {'green': {'features': {'lbp': lbp_map}}}

            # Vegetation: NDVI, GNDVI, SAVI
            spectral = pdata.get('spectral_stack', {})
            if spectral and mask is not None:
                pdata['vegetation_indices'] = self._compute_vegetation(spectral, mask)
            else:
                pdata['vegetation_indices'] = {}
            
            # # Morphology: PlantCV size analysis (COMMENTED OUT)
            # pdata['morphology_features'] = self.morphology_extractor.extract_morphology_features(composite, mask)
            pdata['morphology_features'] = {}
        
        return plants
    
    def _compute_vegetation(self, spectral: Dict[str, np.ndarray], mask: np.ndarray) -> Dict[str, Any]:
        """Compute NDVI, ARI, GNDVI only."""
        out = {}
        for name in ("NDVI", "GNDVI", "SAVI"):
            bands = self.vegetation_extractor.index_bands.get(name, [])
            if not all(b in spectral for b in bands):
                continue
            
            arrays = [np.asarray(spectral[b].squeeze(-1), dtype=np.float64) for b in bands]
            values = self.vegetation_extractor.index_formulas[name](*arrays).astype(np.float64)
            binary_mask = (mask > 0)
            masked_values = np.where(binary_mask, values, np.nan)
            valid = masked_values[~np.isnan(masked_values)]
            
            stats = {
                'mean': float(np.mean(valid)) if valid.size else 0.0,
                'std': float(np.std(valid)) if valid.size else 0.0,
            }
            out[name] = {'values': masked_values, 'statistics': stats}
        return out