Fahimeh Orvati Nia
commited on
Commit
·
916b83d
1
Parent(s):
7c31b44
app.py
CHANGED
|
@@ -4,21 +4,25 @@ from pathlib import Path
|
|
| 4 |
from wrapper import run_pipeline_on_image
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
with tempfile.TemporaryDirectory() as tmpdir:
|
| 11 |
-
|
| 12 |
-
src = Path(file_obj.name)
|
| 13 |
ext = src.suffix.lstrip('.') or 'tif'
|
| 14 |
img_path = Path(tmpdir) / f"input.{ext}"
|
|
|
|
| 15 |
try:
|
|
|
|
| 16 |
img_bytes = src.read_bytes()
|
| 17 |
img_path.write_bytes(img_bytes)
|
| 18 |
except Exception:
|
| 19 |
# Fallback: save via PIL if direct copy fails
|
| 20 |
Image.open(src).save(img_path)
|
| 21 |
|
|
|
|
| 22 |
outputs = run_pipeline_on_image(str(img_path), tmpdir, save_artifacts=True)
|
| 23 |
|
| 24 |
def load_pil(path_str):
|
|
@@ -36,22 +40,32 @@ def process(file_obj):
|
|
| 36 |
overlay = load_pil(outputs.get('Overlay'))
|
| 37 |
mask = load_pil(outputs.get('Mask'))
|
| 38 |
size_img = load_pil(str(Path(tmpdir) / 'results/size.size_analysis.png'))
|
|
|
|
| 39 |
# Texture LBP green path
|
| 40 |
lbp_path = Path(tmpdir) / 'texture_output/lbp_green.png'
|
| 41 |
texture_img = load_pil(str(lbp_path)) if lbp_path.exists() else None
|
|
|
|
|
|
|
| 42 |
order = ['NDVI', 'GNDVI', 'SAVI']
|
| 43 |
gallery_items = [load_pil(outputs[k]) for k in order if k in outputs]
|
|
|
|
| 44 |
stats_text = outputs.get('StatsText', '')
|
|
|
|
| 45 |
return size_img, composite, mask, overlay, texture_img, gallery_items, stats_text
|
| 46 |
|
|
|
|
| 47 |
with gr.Blocks() as demo:
|
| 48 |
gr.Markdown("# 🌿 Automated Plant Analysis Demo")
|
| 49 |
-
gr.Markdown("Upload a sorghum plant image to compute and visualize composite, mask, overlay, texture (LBP), vegetation indices, and statistics.")
|
| 50 |
|
| 51 |
with gr.Row():
|
| 52 |
with gr.Column():
|
| 53 |
-
# Use
|
| 54 |
-
inp = gr.File(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
run = gr.Button("Run Pipeline", variant="primary")
|
| 56 |
|
| 57 |
with gr.Row():
|
|
@@ -66,7 +80,11 @@ with gr.Blocks() as demo:
|
|
| 66 |
gallery = gr.Gallery(label="Vegetation Indices", columns=3, height="auto")
|
| 67 |
stats = gr.Textbox(label="Statistics", lines=4)
|
| 68 |
|
| 69 |
-
run.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
if __name__ == "__main__":
|
| 72 |
demo.launch()
|
|
|
|
| 4 |
from wrapper import run_pipeline_on_image
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
+
|
| 8 |
+
def process(file_path):
|
| 9 |
+
if not file_path:
|
| 10 |
+
return None, None, None, None, None, [], ""
|
| 11 |
+
|
| 12 |
with tempfile.TemporaryDirectory() as tmpdir:
|
| 13 |
+
src = Path(file_path)
|
|
|
|
| 14 |
ext = src.suffix.lstrip('.') or 'tif'
|
| 15 |
img_path = Path(tmpdir) / f"input.{ext}"
|
| 16 |
+
|
| 17 |
try:
|
| 18 |
+
# Copy raw uploaded bytes
|
| 19 |
img_bytes = src.read_bytes()
|
| 20 |
img_path.write_bytes(img_bytes)
|
| 21 |
except Exception:
|
| 22 |
# Fallback: save via PIL if direct copy fails
|
| 23 |
Image.open(src).save(img_path)
|
| 24 |
|
| 25 |
+
# Run the full sorghum pipeline
|
| 26 |
outputs = run_pipeline_on_image(str(img_path), tmpdir, save_artifacts=True)
|
| 27 |
|
| 28 |
def load_pil(path_str):
|
|
|
|
| 40 |
overlay = load_pil(outputs.get('Overlay'))
|
| 41 |
mask = load_pil(outputs.get('Mask'))
|
| 42 |
size_img = load_pil(str(Path(tmpdir) / 'results/size.size_analysis.png'))
|
| 43 |
+
|
| 44 |
# Texture LBP green path
|
| 45 |
lbp_path = Path(tmpdir) / 'texture_output/lbp_green.png'
|
| 46 |
texture_img = load_pil(str(lbp_path)) if lbp_path.exists() else None
|
| 47 |
+
|
| 48 |
+
# Vegetation indices
|
| 49 |
order = ['NDVI', 'GNDVI', 'SAVI']
|
| 50 |
gallery_items = [load_pil(outputs[k]) for k in order if k in outputs]
|
| 51 |
+
|
| 52 |
stats_text = outputs.get('StatsText', '')
|
| 53 |
+
|
| 54 |
return size_img, composite, mask, overlay, texture_img, gallery_items, stats_text
|
| 55 |
|
| 56 |
+
|
| 57 |
with gr.Blocks() as demo:
|
| 58 |
gr.Markdown("# 🌿 Automated Plant Analysis Demo")
|
| 59 |
+
gr.Markdown("Upload a sorghum plant image (TIFF preferred) to compute and visualize composite, mask, overlay, texture (LBP), vegetation indices, and statistics.")
|
| 60 |
|
| 61 |
with gr.Row():
|
| 62 |
with gr.Column():
|
| 63 |
+
# Use File input to preserve raw TIFFs
|
| 64 |
+
inp = gr.File(
|
| 65 |
+
type="filepath",
|
| 66 |
+
file_types=[".tif", ".tiff", ".png", ".jpg"],
|
| 67 |
+
label="Upload Image"
|
| 68 |
+
)
|
| 69 |
run = gr.Button("Run Pipeline", variant="primary")
|
| 70 |
|
| 71 |
with gr.Row():
|
|
|
|
| 80 |
gallery = gr.Gallery(label="Vegetation Indices", columns=3, height="auto")
|
| 81 |
stats = gr.Textbox(label="Statistics", lines=4)
|
| 82 |
|
| 83 |
+
run.click(
|
| 84 |
+
process,
|
| 85 |
+
inputs=inp,
|
| 86 |
+
outputs=[size_img, composite_img, mask_img, overlay_img, texture_img, gallery, stats]
|
| 87 |
+
)
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
| 90 |
demo.launch()
|