Cal-AI / app.py
Adanbalf's picture
Update app.py
54cd9dd verified
raw
history blame
4.75 kB
import requests
import base64
import mimetypes
import os
from pathlib import Path
from typing import Any, Dict, List
import gradio as gr
from openai import OpenAI
headers = {"Authorization": f"Bearer {API_KEY}"}
payload = {"inputs": "Describe this image", "parameters": {}}
res = requests.post(BASE_URL, headers=headers, json=payload)
print(res.json())
# Modelo por defecto
DEFAULT_MODEL = "LLaVA-OneVision-1.5-8B-Instruct"
# Cliente OpenAI-compatible (usa el endpoint de Hugging Face o el tuyo)
_client = OpenAI(
base_url=os.getenv("BASE_URL", ""),
api_key=os.getenv("API_KEY", ""),
)
def _data_url(path: str) -> str:
mime, _ = mimetypes.guess_type(path)
mime = mime or "application/octet-stream"
data = base64.b64encode(Path(path).read_bytes()).decode("utf-8")
return f"data:{mime};base64,{data}"
def _image_content(path: str) -> Dict[str, Any]:
return {"type": "image_url", "image_url": {"url": _data_url(path)}}
def _text_content(text: str) -> Dict[str, Any]:
return {"type": "text", "text": text}
def _message(role: str, content: Any) -> Dict[str, Any]:
return {"role": role, "content": content}
def _build_user_message(message: Dict[str, Any]) -> Dict[str, Any]:
files = message.get("files") or []
text = (message.get("text") or "").strip()
# 🔹 Si no hay texto, añadimos un prompt nutricional por defecto
if not text:
text = (
"Analiza la imagen del plato de comida y describe los alimentos que contiene. "
"Indica una estimación de calorías, proteínas, carbohidratos y grasas. "
"Responde en formato breve y estructurado."
)
content: List[Dict[str, Any]] = [_image_content(p) for p in files]
if text:
content.append(_text_content(text))
return _message("user", content)
def _convert_history(history: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
msgs: List[Dict[str, Any]] = []
user_content: List[Dict[str, Any]] = []
for turn in history or []:
role, content = turn.get("role"), turn.get("content")
if role == "user":
if isinstance(content, str):
user_content.append(_text_content(content))
elif isinstance(content, tuple):
user_content.extend(_image_content(path) for path in content if path)
elif role == "assistant":
msgs.append(_message("user", user_content.copy()))
user_content.clear()
msgs.append(_message("assistant", content))
return msgs
def stream_response(message: Dict[str, Any], history: List[Dict[str, Any]], model_name: str = DEFAULT_MODEL):
messages = _convert_history(history)
messages.append(_build_user_message(message))
try:
stream = _client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.1,
top_p=1,
extra_body={
"repetition_penalty": 1.05,
"frequency_penalty": 0,
"presence_penalty": 0
},
stream=True
)
partial = ""
for chunk in stream:
delta = chunk.choices[0].delta.content
if delta:
partial += delta
yield partial
except Exception as e:
yield f"⚠️ Error al obtener respuesta: {e}"
def build_demo() -> gr.Blocks:
chatbot = gr.Chatbot(type="messages", allow_tags=["think"])
textbox = gr.MultimodalTextbox(
show_label=False,
placeholder="Subí una foto de tu comida para analizarla...",
file_types=["image"],
file_count="single",
max_plain_text_length=32768
)
model_selector = gr.Dropdown(
label="Modelo",
choices=[
("LLaVA-OneVision-1.5-8B-Instruct", "LLaVA-OneVision-1.5-8B-Instruct"),
("LLaVA-OneVision-1.5-4B-Instruct", "LLaVA-OneVision-1.5-4B-Instruct"),
],
value=DEFAULT_MODEL,
)
return gr.ChatInterface(
fn=stream_response,
type="messages",
multimodal=True,
chatbot=chatbot,
textbox=textbox,
title="🍽️ NasFit Vision AI",
description=(
"Subí una foto de tu comida y NasFit IA estimará su contenido nutricional. "
"Basado en **LLaVA-OneVision-1.5**, modelo multimodal open source con análisis visual avanzado. "
"Ideal para tracking nutricional inteligente."
),
additional_inputs=[model_selector],
additional_inputs_accordion=gr.Accordion("Opciones avanzadas", open=False),
).queue(default_concurrency_limit=8)
def main():
build_demo().launch()
if __name__ == "__main__":
main()