File size: 8,386 Bytes
f79d044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7e876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79d044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7e876
f79d044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7e876
f79d044
 
 
 
 
 
 
 
 
 
 
 
 
1d7e876
f79d044
 
 
 
 
1d7e876
f79d044
 
 
 
 
 
 
1d7e876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79d044
 
 
 
 
1d7e876
f79d044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7e876
 
f79d044
 
 
 
1d7e876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79d044
1d7e876
 
 
 
 
 
f79d044
1d7e876
 
f79d044
 
 
 
 
 
1d7e876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79d044
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""

CHIMERA Benchmark Dashboard

Public interactive visualization of all-in-one GPU neuromorphic architecture

"""

import gradio as gr
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
import json

# Load benchmark data
with open('benchmark_data.json', 'r') as f:
    data = json.load(f)

def create_summary_metrics():
    """Create summary metrics display"""
    metrics = data['metrics']

    summary = f"""

    # CHIMERA Performance Summary



    ## Overall Metrics

    - **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline

    - **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case)

    - **Average Latency:** {metrics['average_latency_ms']:.2f}ms

    - **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation

    - **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J



    ## Architecture Advantages

    - **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch)

    - **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction)

    - **All-in-One GPU:** No CPU/RAM usage - pure GPU processing

    - **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2

    """

    return summary

def create_speedup_chart():
    """Create speedup visualization"""
    df = pd.DataFrame(data['benchmarks'])

    fig = go.Figure()

    fig.add_trace(go.Bar(
        x=df['task_name'],
        y=df['speedup_factor'],
        marker_color='rgb(55, 83, 109)',
        text=df['speedup_factor'].round(1),
        textposition='outside',
        name='Speedup vs Baseline'
    ))

    fig.update_layout(
        title='CHIMERA Speedup Across Benchmarks',
        xaxis_title='Benchmark Task',
        yaxis_title='Speedup Factor (x)',
        yaxis_type='log',
        height=500
    )

    return fig

def create_latency_comparison():
    """Create latency comparison chart"""
    df = pd.DataFrame(data['benchmarks'])

    fig = go.Figure()

    fig.add_trace(go.Bar(
        name='CHIMERA',
        x=df['task_name'],
        y=df['latency_ms'],
        marker_color='rgb(26, 118, 255)'
    ))

    fig.add_trace(go.Bar(
        name='Baseline',
        x=df['task_name'],
        y=df['baseline_latency_ms'],
        marker_color='rgb(255, 65, 54)'
    ))

    fig.update_layout(
        title='Latency Comparison: CHIMERA vs Baseline',
        xaxis_title='Benchmark Task',
        yaxis_title='Latency (ms)',
        yaxis_type='log',
        barmode='group',
        height=500
    )

    return fig

def create_energy_efficiency_chart():
    """Create energy efficiency visualization"""
    df = pd.DataFrame(data['benchmarks'])

    fig = px.scatter(
        df,
        x='energy_joules',
        y='efficiency_score',
        size='speedup_factor',
        color='benchmark_name',
        hover_data=['task_name', 'latency_ms', 'power_watts'],
        title='Energy Efficiency: Lower Energy + Higher Efficiency = Better',
        labels={
            'energy_joules': 'Energy Consumption (J)',
            'efficiency_score': 'Efficiency Score (ops/J)',
            'benchmark_name': 'Benchmark'
        }
    )

    fig.update_layout(height=500)

    return fig

def create_hardware_scaling_chart():
    """Create hardware scalability visualization"""
    # Filter scalability benchmarks
    scaling_df = pd.DataFrame([
        b for b in data['benchmarks']
        if 'Scalability' in b['benchmark_name']
    ])

    if len(scaling_df) == 0:
        return go.Figure().update_layout(title="No scalability data available")

    fig = go.Figure()

    for platform in scaling_df['hardware_platform'].unique():
        platform_data = scaling_df[scaling_df['hardware_platform'] == platform]

        fig.add_trace(go.Bar(
            name=platform,
            x=['Latency', 'Power'],
            y=[
                platform_data['latency_ms'].values[0],
                platform_data['power_watts'].values[0]
            ]
        ))

    fig.update_layout(
        title='Hardware Scalability: CHIMERA Performance Across Platforms',
        yaxis_title='Value',
        barmode='group',
        height=500
    )

    return fig

def get_detailed_table():
    """Create detailed results table"""
    df = pd.DataFrame(data['benchmarks'])

    table_df = df[[
        'benchmark_name', 'task_name', 'latency_ms', 'throughput_qps',
        'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform'
    ]].copy()

    table_df.columns = [
        'Benchmark', 'Task', 'Latency (ms)', 'Throughput (QPS)',
        'Speedup', 'Energy (J)', 'Efficiency', 'Hardware'
    ]

    # Round numerical columns
    for col in ['Latency (ms)', 'Throughput (QPS)', 'Speedup', 'Energy (J)', 'Efficiency']:
        table_df[col] = table_df[col].round(2)

    return table_df

# Create Gradio interface
with gr.Blocks(title="CHIMERA Benchmark Dashboard", theme=gr.themes.Soft()) as demo:

    gr.Markdown("# CHIMERA: All-in-One GPU Neuromorphic Architecture")
    gr.Markdown("### Public Benchmark Results - Revolutionary AI Performance")

    with gr.Tab("Summary"):
        gr.Markdown(create_summary_metrics())

    with gr.Tab("Performance"):
        gr.Plot(create_speedup_chart())
        gr.Plot(create_latency_comparison())

    with gr.Tab("Energy Efficiency"):
        gr.Plot(create_energy_efficiency_chart())
        gr.Markdown("""

        ## Energy Efficiency Analysis



        CHIMERA achieves exceptional energy efficiency through:

        - **All-in-one GPU processing** - No CPU/RAM overhead

        - **Holographic memory** - Data stays in GPU textures

        - **Frame-by-frame simulation** - Efficient neuromorphic computation

        - **Minimal framework size** - 10MB vs 2.5GB for PyTorch



        **Average energy savings: 92.7% vs baseline frameworks**

        """)

    with gr.Tab("Hardware Scalability"):
        gr.Plot(create_hardware_scaling_chart())
        gr.Markdown("""

        ## Universal Hardware Support



        CHIMERA works on any GPU with OpenGL 4.3+:

        - NVIDIA GeForce/RTX (CUDA 11.0+)

        - AMD Radeon (OpenGL 4.6)

        - Intel UHD/Iris (OpenGL 4.5)

        - Apple M1/M2 (Metal backend)

        - Raspberry Pi 4 (OpenGL 3.3)



        **No vendor lock-in - truly universal AI acceleration**

        """)

    with gr.Tab("Detailed Results"):
        gr.Dataframe(get_detailed_table(), interactive=True)

    with gr.Tab("About"):
        gr.Markdown(f"""

        ## About CHIMERA



        CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence:



        ### Key Innovations

        1. **Everything as Images** - All processing happens as frame-by-frame GPU textures

        2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence

        3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed)

        4. **Pure GPU** - Zero CPU usage during inference

        5. **Universal** - Works on any GPU hardware



        ### Architecture Principles

        - **Neuromorphic simulation** in every frame

        - **Cellular automaton** creates emergent intelligence

        - **Holographic encoding** for efficient memory

        - **OpenGL compute shaders** for universal compatibility



        ### Performance Highlights

        - Average {data['metrics']['average_speedup']:.1f}x speedup

        - 88.7% memory reduction

        - 92.7% energy savings

        - 10MB framework (vs 2.5GB PyTorch)



        ### Repository

        - GitHub: [CHIMERA Architecture](https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture)

        - Author: Francisco Angulo de Lafuente

        - Version: {data['model_name']}



        ### Citation

        ```

        @software{{chimera2025,

          title={{CHIMERA: All-in-One GPU Neuromorphic Architecture}},

          author={{Angulo de Lafuente, Francisco}},

          year={{2025}},

          url={{https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture}}

        }}

        ```

        """)

if __name__ == "__main__":
    demo.launch()