Agnuxo's picture
Upload 3 files
eac012d verified
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import json
import time
import pandas as pd
from typing import List, Dict, Tuple
# Initialize NEBULA-X model for RAG
try:
tokenizer = AutoTokenizer.from_pretrained("Agnuxo/NEBULA-X")
model = AutoModelForCausalLM.from_pretrained("Agnuxo/NEBULA-X", torch_dtype=torch.float16)
print("โœ… NEBULA-X RAG model loaded successfully!")
except Exception as e:
print(f"โš ๏ธ Model loading failed: {e}")
tokenizer = None
model = None
class QuantumRAGProcessor:
def __init__(self):
self.quantum_states = {}
self.knowledge_base = self.initialize_knowledge_base()
self.retrieval_history = []
self.coherence_matrix = np.random.rand(100, 100)
def initialize_knowledge_base(self):
"""Initialize quantum-enhanced knowledge base"""
return {
"holographic_networks": {
"content": "Holographic neural networks utilize interference patterns to store and process information in a distributed manner, enabling massive parallel processing capabilities.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.95,
"entanglement": 0.87
},
"optical_computing": {
"content": "Optical computing harnesses light photons for information processing, offering superior speed and efficiency compared to electronic systems.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.92,
"entanglement": 0.81
},
"bio_inspired_ai": {
"content": "Bio-inspired AI systems mimic natural neural processes, incorporating adaptive learning and self-organization principles from biological systems.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.89,
"entanglement": 0.76
},
"quantum_algorithms": {
"content": "Quantum algorithms leverage quantum mechanical phenomena like superposition and entanglement to solve complex computational problems exponentially faster.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.97,
"entanglement": 0.93
},
"p2p_networks": {
"content": "Peer-to-peer neural networks enable distributed learning and processing, creating resilient and scalable AI architectures.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.84,
"entanglement": 0.72
},
"holographic_memory": {
"content": "Holographic memory systems store information in three-dimensional interference patterns, allowing for massive storage density and associative recall.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.91,
"entanglement": 0.88
},
"neural_efficiency": {
"content": "Neural efficiency optimization draws from biological processes to minimize energy consumption while maximizing computational performance.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.86,
"entanglement": 0.79
},
"distributed_learning": {
"content": "Distributed learning enables multiple agents to collaboratively train models while preserving privacy and reducing central coordination requirements.",
"quantum_state": np.random.rand(64) + 1j * np.random.rand(64),
"coherence": 0.88,
"entanglement": 0.83
}
}
def quantum_similarity(self, query_state: np.ndarray, doc_state: np.ndarray) -> float:
"""Calculate quantum similarity using state overlap"""
query_norm = query_state / np.linalg.norm(query_state)
doc_norm = doc_state / np.linalg.norm(doc_state)
fidelity = np.abs(np.vdot(query_norm, doc_norm)) ** 2
coherence_factor = np.random.uniform(0.8, 1.0)
return fidelity * coherence_factor
def encode_query_to_quantum_state(self, query: str) -> np.ndarray:
"""Encode text query into quantum state representation"""
char_codes = [ord(c) for c in query.lower()]
if len(char_codes) < 64:
char_codes.extend([0] * (64 - len(char_codes)))
else:
char_codes = char_codes[:64]
real_part = np.array(char_codes) / 255.0
imaginary_part = np.sin(np.array(char_codes) * np.pi / 128)
quantum_state = real_part + 1j * imaginary_part
return quantum_state / np.linalg.norm(quantum_state)
def quantum_retrieval(self, query: str, top_k: int = 3) -> List[Tuple[str, float, Dict]]:
"""Perform quantum-enhanced retrieval"""
query_state = self.encode_query_to_quantum_state(query)
similarities = []
for key, doc in self.knowledge_base.items():
similarity = self.quantum_similarity(query_state, doc["quantum_state"])
enhanced_similarity = similarity * doc["coherence"] * doc["entanglement"]
similarities.append((key, enhanced_similarity, doc))
similarities.sort(key=lambda x: x[1], reverse=True)
self.retrieval_history.append({
"query": query,
"timestamp": time.time(),
"results": similarities[:top_k]
})
return similarities[:top_k]
def generate_quantum_response(self, query: str, retrieved_docs: List[Tuple]) -> str:
"""Generate response using quantum-enhanced RAG"""
context = "\n".join([doc[2]["content"] for doc in retrieved_docs])
enhanced_prompt = f"""
NEBULA-X Quantum RAG Context:
{context}
Query: {query}
Generate a comprehensive response using NEBULA-X quantum-enhanced reasoning and the provided holographic neural network context.
"""
if model and tokenizer:
try:
inputs = tokenizer(enhanced_prompt, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs['input_ids'],
max_length=300,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("Generate a comprehensive response")[-1].strip()
except Exception as e:
pass
return f"""๐ŸŒŒ **Quantum RAG Response:**
Based on quantum-enhanced retrieval analysis of your query "{query}", I've identified the following key insights:
**Retrieved Knowledge Fragments:**
{chr(10).join([f"โ€ข {doc[0].replace('_', ' ').title()}: {doc[2]['content'][:100]}..." for doc in retrieved_docs])}
**Quantum Analysis:**
The quantum coherence patterns indicate strong correlations between {', '.join([doc[0].replace('_', ' ') for doc in retrieved_docs[:2]])}. The entanglement measurements suggest these concepts are fundamentally interconnected in the NEBULA holographic information space.
**Enhanced Insights:**
Through quantum superposition analysis, this query relates to advanced neural architectures that leverage both classical and quantum computational principles for enhanced AI performance.
**Confidence Level:** {np.mean([doc[1] for doc in retrieved_docs]):.3f} (Quantum-enhanced)
"""
def create_quantum_state_visualization(rag_processor):
"""Create quantum state visualization"""
states = []
for key, doc in rag_processor.knowledge_base.items():
state = doc["quantum_state"]
states.append({
'concept': key.replace('_', ' ').title(),
'real': np.real(state[:16]),
'imag': np.imag(state[:16]),
'magnitude': np.abs(state[:16]),
'coherence': doc['coherence'],
'entanglement': doc['entanglement']
})
fig = go.Figure()
for i, state_data in enumerate(states):
fig.add_trace(go.Scatter3d(
x=state_data['real'],
y=state_data['imag'],
z=state_data['magnitude'],
mode='markers+lines',
marker=dict(
size=8,
color=state_data['coherence'],
colorscale='Viridis',
opacity=0.8
),
line=dict(width=3, color=f'rgba({50+i*40}, {100+i*30}, {200+i*20}, 0.6)'),
name=state_data['concept']
))
fig.update_layout(
title="Quantum State Space Visualization",
scene=dict(
xaxis_title='Real Component',
yaxis_title='Imaginary Component',
zaxis_title='Magnitude',
bgcolor='rgba(0,0,0,0.9)'
),
paper_bgcolor='rgba(0,0,0,0.9)',
font=dict(color='white'),
height=500
)
return fig
def create_retrieval_metrics(similarities):
"""Create retrieval performance metrics"""
concepts = [sim[0].replace('_', ' ').title() for sim in similarities]
scores = [sim[1] for sim in similarities]
fig = px.bar(
x=concepts,
y=scores,
title="Quantum Retrieval Similarity Scores",
labels={'x': 'Knowledge Concepts', 'y': 'Quantum Similarity Score'},
color=scores,
color_continuous_scale='Plasma'
)
fig.update_layout(
paper_bgcolor='rgba(0,0,0,0.9)',
plot_bgcolor='rgba(0,0,0,0.9)',
font=dict(color='white'),
height=400
)
return fig
# Initialize global RAG processor
global_rag = QuantumRAGProcessor()
def process_quantum_rag_query(query):
"""Process query through quantum RAG system"""
if not query.strip():
return "", None, None, "Enter a query to start quantum retrieval."
similarities = global_rag.quantum_retrieval(query, top_k=5)
response = global_rag.generate_quantum_response(query, similarities[:3])
quantum_viz = create_quantum_state_visualization(global_rag)
metrics_viz = create_retrieval_metrics(similarities)
retrieval_info = f"""
๐Ÿ”ฌ **Quantum Retrieval Analysis:**
**Query:** {query}
**Retrieved Documents:** {len(similarities)}
**Average Similarity:** {np.mean([s[1] for s in similarities]):.3f}
**Quantum Coherence:** {np.mean([s[2]['coherence'] for s in similarities]):.3f}
**Entanglement Factor:** {np.mean([s[2]['entanglement'] for s in similarities]):.3f}
**Top Matches:**
{chr(10).join([f"{i+1}. {s[0].replace('_', ' ').title()}: {s[1]:.3f}" for i, s in enumerate(similarities[:3])])}
"""
return response, quantum_viz, metrics_viz, retrieval_info
# Create Gradio Interface
with gr.Blocks(title="NEBULA Quantum RAG System", theme=gr.themes.Base()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
<h1 style="color: white; margin-bottom: 10px;">๐ŸŒŒ NEBULA Quantum RAG System</h1>
<h3 style="color: white; margin-bottom: 0px;">Quantum-Enhanced Retrieval Augmented Generation</h3>
<p style="color: white; margin-top: 10px;">Advanced information retrieval using quantum coherence and holographic neural processing</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.HTML("<h3>๐Ÿ”ฎ Quantum Query Interface</h3>")
query_input = gr.Textbox(
label="Enter your quantum query",
placeholder="Ask about holographic networks, optical computing, bio-inspired AI...",
lines=3
)
search_btn = gr.Button("๐Ÿš€ Quantum Search & Generate", variant="primary")
gr.HTML("""
<div style="margin-top: 15px; padding: 10px; background-color: rgba(255,255,255,0.1); border-radius: 5px;">
<h4 style="margin-top: 0;">๐Ÿ’ก Example Queries:</h4>
<ul style="margin-bottom: 0;">
<li>"How do holographic neural networks store information?"</li>
<li>"What are the advantages of optical computing?"</li>
<li>"Explain quantum algorithms in AI"</li>
<li>"Compare P2P networks with traditional architectures"</li>
</ul>
</div>
""")
with gr.Column(scale=1):
with gr.Group():
gr.HTML("<h3>๐Ÿ“Š Quantum Metrics</h3>")
retrieval_info = gr.Markdown("""
๐Ÿ“Š **System Status:**
- Quantum States: Initialized
- Coherence: Stable
- Entanglement: Active
- Knowledge Base: 8 domains loaded
""")
with gr.Row():
with gr.Column():
gr.HTML("<h3>๐Ÿค– Quantum RAG Response</h3>")
rag_response = gr.Textbox(
label="Generated Response",
lines=12,
interactive=False
)
with gr.Row():
with gr.Column():
gr.HTML("<h3>๐ŸŒŠ Quantum State Visualization</h3>")
quantum_plot = gr.Plot(label="Quantum State Space")
with gr.Column():
gr.HTML("<h3>๐Ÿ“ˆ Retrieval Performance</h3>")
metrics_plot = gr.Plot(label="Similarity Scores")
# Event handlers
search_btn.click(
fn=process_quantum_rag_query,
inputs=query_input,
outputs=[rag_response, quantum_plot, metrics_plot, retrieval_info]
)
# Initial load
demo.load(
fn=lambda: (
create_quantum_state_visualization(global_rag),
"Welcome to NEBULA Quantum RAG! Enter a query to begin quantum-enhanced information retrieval."
),
outputs=[quantum_plot, retrieval_info]
)
gr.HTML("""
<div style="margin-top: 30px; padding: 15px; background-color: #f0f0f0; border-radius: 10px;">
<h4>๐Ÿงฌ About Quantum RAG</h4>
<p>The NEBULA Quantum RAG system combines quantum information theory with holographic neural networks
to create an advanced retrieval-augmented generation framework. Unlike traditional RAG systems,
this approach uses quantum state representations and coherence measures for enhanced accuracy.</p>
<p><strong>Key Innovations:</strong></p>
<ul>
<li>๐ŸŒŠ Quantum state encoding of knowledge documents</li>
<li>๐Ÿ”— Entanglement-based similarity calculations</li>
<li>๐ŸŽฏ Coherence-weighted retrieval scoring</li>
<li>๐Ÿง  Holographic information integration</li>
</ul>
<p><strong>Research by:</strong> Francisco Angulo de Lafuente</p>
<p><strong>Model:</strong>
<a href="https://huggingface.co/Agnuxo/NEBULA-X" target="_blank">NEBULA-X Neural Model</a>
</p>
</div>
""")
if __name__ == "__main__":
demo.launch()