HunyuanImage-3 / app.py
Alae65's picture
Update app.py: Add HF Inference API integration with n8n support
4af9c3b verified
raw
history blame
5.7 kB
import gradio as gr
import requests
import os
import base64
from io import BytesIO
from PIL import Image
import json
# Hugging Face API configuration
HF_TOKEN = os.environ.get("HF_TOKEN", "")
API_URL = "https://api-inference.huggingface.co/models/tencent/HunyuanImage-3.0"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def generate_image_api(prompt, seed=42, num_inference_steps=50):
"""
Generate image using Hugging Face Inference API
Uses paid API from your HF account balance
"""
try:
payload = {
"inputs": prompt,
"parameters": {
"seed": int(seed),
"num_inference_steps": int(num_inference_steps)
}
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
if response.status_code == 200:
image = Image.open(BytesIO(response.content))
return image, seed, "Success!"
else:
error_msg = f"API Error: {response.status_code} - {response.text}"
print(error_msg)
placeholder = Image.new('RGB', (1024, 1024), color=(240, 240, 245))
return placeholder, seed, error_msg
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
placeholder = Image.new('RGB', (1024, 1024), color=(240, 240, 245))
return placeholder, seed, error_msg
def infer(prompt, seed, randomize_seed, diff_infer_steps, image_size):
import random
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
image, used_seed, status = generate_image_api(prompt, seed, diff_infer_steps)
return image, used_seed, status
def api_generate(prompt: str, seed: int = 42, num_inference_steps: int = 50):
"""
API endpoint for external integrations like n8n
Returns base64 encoded image
"""
try:
image, used_seed, status = generate_image_api(prompt, seed, num_inference_steps)
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return {
"success": True,
"image_base64": img_str,
"seed": used_seed,
"status": status,
"prompt": prompt
}
except Exception as e:
return {
"success": False,
"error": str(e),
"seed": seed,
"prompt": prompt
}
examples = [
"A brown and white dog is running on the grass",
"A futuristic city at sunset with flying cars",
"A serene mountain landscape with a crystal clear lake",
]
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.note {
background: #fff3cd;
padding: 15px;
border-radius: 8px;
margin: 10px 0;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🎨 HunyuanImage-3.0 Text-to-Image with Inference API")
gr.Markdown(
"""### Tencent HunyuanImage-3.0 - Using Paid Hugging Face Inference API
βœ… This Space now uses the Hugging Face Inference API (paid from your account balance)
- Real image generation with HunyuanImage-3.0
- API endpoint available for n8n integration
- Set your HF_TOKEN in Space secrets
πŸ”— For n8n integration: Use the API endpoint at /gradio_api/ with the api_generate function
""",
elem_classes="note"
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=True,
max_lines=3,
placeholder="Enter your prompt for image generation...",
value="A serene mountain landscape with a crystal clear lake"
)
run_button = gr.Button("🎨 Generate Image", variant="primary")
result = gr.Image(label="Generated Image", show_label=True)
status_text = gr.Textbox(label="Status", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2**32 - 1,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
diff_infer_steps = gr.Slider(
label="Diffusion inference steps",
minimum=10,
maximum=100,
step=10,
value=50,
)
image_size = gr.Radio(
label="Image Size",
choices=["auto", "1024x1024", "1280x768", "768x1280"],
value="auto",
)
gr.Examples(examples=examples, inputs=[prompt])
run_button.click(
fn=infer,
inputs=[prompt, seed, randomize_seed, diff_infer_steps, image_size],
outputs=[result, seed, status_text],
)
api_demo = gr.Interface(
fn=api_generate,
inputs=[
gr.Text(label="Prompt"),
gr.Number(label="Seed", value=42),
gr.Number(label="Inference Steps", value=50)
],
outputs=gr.JSON(label="Response"),
title="HunyuanImage-3.0 API Endpoint",
description="API endpoint for n8n and other integrations. Returns base64 encoded image."
)
app = gr.TabbedInterface(
[demo, api_demo],
["Interface", "API Endpoint"],
title="HunyuanImage-3.0 Generator"
)
if __name__ == "__main__":
app.launch()