Spaces:
Runtime error
Runtime error
| import numpy as np | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import cv2 | |
| import torch | |
| # import clip | |
| def convert_box_xywh_to_xyxy(box): | |
| x1 = box[0] | |
| y1 = box[1] | |
| x2 = box[0] + box[2] | |
| y2 = box[1] + box[3] | |
| return [x1, y1, x2, y2] | |
| def segment_image(image, bbox): | |
| image_array = np.array(image) | |
| segmented_image_array = np.zeros_like(image_array) | |
| x1, y1, x2, y2 = bbox | |
| segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] | |
| segmented_image = Image.fromarray(segmented_image_array) | |
| black_image = Image.new("RGB", image.size, (255, 255, 255)) | |
| # transparency_mask = np.zeros_like((), dtype=np.uint8) | |
| transparency_mask = np.zeros( | |
| (image_array.shape[0], image_array.shape[1]), dtype=np.uint8 | |
| ) | |
| transparency_mask[y1:y2, x1:x2] = 255 | |
| transparency_mask_image = Image.fromarray(transparency_mask, mode="L") | |
| black_image.paste(segmented_image, mask=transparency_mask_image) | |
| return black_image | |
| def format_results(result, filter=0): | |
| annotations = [] | |
| n = len(result.masks.data) | |
| for i in range(n): | |
| annotation = {} | |
| mask = result.masks.data[i] == 1.0 | |
| if torch.sum(mask) < filter: | |
| continue | |
| annotation["id"] = i | |
| annotation["segmentation"] = mask.cpu().numpy() | |
| annotation["bbox"] = result.boxes.data[i] | |
| annotation["score"] = result.boxes.conf[i] | |
| annotation["area"] = annotation["segmentation"].sum() | |
| annotations.append(annotation) | |
| return annotations | |
| def filter_masks(annotations): # filte the overlap mask | |
| annotations.sort(key=lambda x: x["area"], reverse=True) | |
| to_remove = set() | |
| for i in range(0, len(annotations)): | |
| a = annotations[i] | |
| for j in range(i + 1, len(annotations)): | |
| b = annotations[j] | |
| if i != j and j not in to_remove: | |
| # check if | |
| if b["area"] < a["area"]: | |
| if (a["segmentation"] & b["segmentation"]).sum() / b[ | |
| "segmentation" | |
| ].sum() > 0.8: | |
| to_remove.add(j) | |
| return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove | |
| def get_bbox_from_mask(mask): | |
| mask = mask.astype(np.uint8) | |
| contours, hierarchy = cv2.findContours( | |
| mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE | |
| ) | |
| x1, y1, w, h = cv2.boundingRect(contours[0]) | |
| x2, y2 = x1 + w, y1 + h | |
| if len(contours) > 1: | |
| for b in contours: | |
| x_t, y_t, w_t, h_t = cv2.boundingRect(b) | |
| # 将多个bbox合并成一个 | |
| x1 = min(x1, x_t) | |
| y1 = min(y1, y_t) | |
| x2 = max(x2, x_t + w_t) | |
| y2 = max(y2, y_t + h_t) | |
| h = y2 - y1 | |
| w = x2 - x1 | |
| return [x1, y1, x2, y2] | |
| def fast_process( | |
| annotations, | |
| image, | |
| device, | |
| scale, | |
| better_quality=False, | |
| mask_random_color=True, | |
| bbox=None, | |
| use_retina=True, | |
| withContours=True, | |
| ): | |
| if isinstance(annotations[0], dict): | |
| annotations = [annotation['segmentation'] for annotation in annotations] | |
| original_h = image.height | |
| original_w = image.width | |
| if better_quality: | |
| if isinstance(annotations[0], torch.Tensor): | |
| annotations = np.array(annotations.cpu()) | |
| for i, mask in enumerate(annotations): | |
| mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) | |
| annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) | |
| if device == 'cpu': | |
| annotations = np.array(annotations) | |
| inner_mask = fast_show_mask( | |
| annotations, | |
| plt.gca(), | |
| random_color=mask_random_color, | |
| bbox=bbox, | |
| retinamask=use_retina, | |
| target_height=original_h, | |
| target_width=original_w, | |
| ) | |
| else: | |
| if isinstance(annotations[0], np.ndarray): | |
| annotations = torch.from_numpy(annotations) | |
| inner_mask = fast_show_mask_gpu( | |
| annotations, | |
| plt.gca(), | |
| random_color=mask_random_color, | |
| bbox=bbox, | |
| retinamask=use_retina, | |
| target_height=original_h, | |
| target_width=original_w, | |
| ) | |
| if isinstance(annotations, torch.Tensor): | |
| annotations = annotations.cpu().numpy() | |
| if withContours: | |
| contour_all = [] | |
| temp = np.zeros((original_h, original_w, 1)) | |
| for i, mask in enumerate(annotations): | |
| if type(mask) == dict: | |
| mask = mask['segmentation'] | |
| annotation = mask.astype(np.uint8) | |
| if use_retina == False: | |
| annotation = cv2.resize( | |
| annotation, | |
| (original_w, original_h), | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
| for contour in contours: | |
| contour_all.append(contour) | |
| cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale) | |
| color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9]) | |
| contour_mask = temp / 255 * color.reshape(1, 1, -1) | |
| image = image.convert('RGBA') | |
| overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA') | |
| image.paste(overlay_inner, (0, 0), overlay_inner) | |
| if withContours: | |
| overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA') | |
| image.paste(overlay_contour, (0, 0), overlay_contour) | |
| return image | |
| # CPU post process | |
| def fast_show_mask( | |
| annotation, | |
| ax, | |
| random_color=False, | |
| bbox=None, | |
| retinamask=True, | |
| target_height=960, | |
| target_width=960, | |
| ): | |
| mask_sum = annotation.shape[0] | |
| height = annotation.shape[1] | |
| weight = annotation.shape[2] | |
| # 将annotation 按照面积 排序 | |
| areas = np.sum(annotation, axis=(1, 2)) | |
| sorted_indices = np.argsort(areas)[::1] | |
| annotation = annotation[sorted_indices] | |
| index = (annotation != 0).argmax(axis=0) | |
| if random_color == True: | |
| color = np.random.random((mask_sum, 1, 1, 3)) | |
| else: | |
| color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255]) | |
| transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6 | |
| visual = np.concatenate([color, transparency], axis=-1) | |
| mask_image = np.expand_dims(annotation, -1) * visual | |
| mask = np.zeros((height, weight, 4)) | |
| h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') | |
| indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
| mask[h_indices, w_indices, :] = mask_image[indices] | |
| if bbox is not None: | |
| x1, y1, x2, y2 = bbox | |
| ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
| if retinamask == False: | |
| mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST) | |
| return mask | |
| def fast_show_mask_gpu( | |
| annotation, | |
| ax, | |
| random_color=False, | |
| bbox=None, | |
| retinamask=True, | |
| target_height=960, | |
| target_width=960, | |
| ): | |
| device = annotation.device | |
| mask_sum = annotation.shape[0] | |
| height = annotation.shape[1] | |
| weight = annotation.shape[2] | |
| areas = torch.sum(annotation, dim=(1, 2)) | |
| sorted_indices = torch.argsort(areas, descending=False) | |
| annotation = annotation[sorted_indices] | |
| # 找每个位置第一个非零值下标 | |
| index = (annotation != 0).to(torch.long).argmax(dim=0) | |
| if random_color == True: | |
| color = torch.rand((mask_sum, 1, 1, 3)).to(device) | |
| else: | |
| color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor( | |
| [30 / 255, 144 / 255, 255 / 255] | |
| ).to(device) | |
| transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6 | |
| visual = torch.cat([color, transparency], dim=-1) | |
| mask_image = torch.unsqueeze(annotation, -1) * visual | |
| # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 | |
| mask = torch.zeros((height, weight, 4)).to(device) | |
| h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight)) | |
| indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
| # 使用向量化索引更新show的值 | |
| mask[h_indices, w_indices, :] = mask_image[indices] | |
| mask_cpu = mask.cpu().numpy() | |
| if bbox is not None: | |
| x1, y1, x2, y2 = bbox | |
| ax.add_patch( | |
| plt.Rectangle( | |
| (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 | |
| ) | |
| ) | |
| if retinamask == False: | |
| mask_cpu = cv2.resize( | |
| mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST | |
| ) | |
| return mask_cpu | |
| # # clip | |
| # @torch.no_grad() | |
| # def retriev( | |
| # model, preprocess, elements, search_text: str, device | |
| # ) -> int: | |
| # preprocessed_images = [preprocess(image).to(device) for image in elements] | |
| # tokenized_text = clip.tokenize([search_text]).to(device) | |
| # stacked_images = torch.stack(preprocessed_images) | |
| # image_features = model.encode_image(stacked_images) | |
| # text_features = model.encode_text(tokenized_text) | |
| # image_features /= image_features.norm(dim=-1, keepdim=True) | |
| # text_features /= text_features.norm(dim=-1, keepdim=True) | |
| # probs = 100.0 * image_features @ text_features.T | |
| # return probs[:, 0].softmax(dim=0) | |
| def crop_image(annotations, image_path): | |
| image = Image.open(image_path) | |
| ori_w, ori_h = image.size | |
| mask_h, mask_w = annotations[0]["segmentation"].shape | |
| if ori_w != mask_w or ori_h != mask_h: | |
| image = image.resize((mask_w, mask_h)) | |
| cropped_boxes = [] | |
| cropped_images = [] | |
| not_crop = [] | |
| filter_id = [] | |
| # annotations, _ = filter_masks(annotations) | |
| # filter_id = list(_) | |
| for _, mask in enumerate(annotations): | |
| if np.sum(mask["segmentation"]) <= 100: | |
| filter_id.append(_) | |
| continue | |
| bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox | |
| cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片 | |
| # cropped_boxes.append(segment_image(image,mask["segmentation"])) | |
| cropped_images.append(bbox) # 保存裁剪的图片的bbox | |
| return cropped_boxes, cropped_images, not_crop, filter_id, annotations | |
| def box_prompt(masks, bbox, target_height, target_width): | |
| h = masks.shape[1] | |
| w = masks.shape[2] | |
| if h != target_height or w != target_width: | |
| bbox = [ | |
| int(bbox[0] * w / target_width), | |
| int(bbox[1] * h / target_height), | |
| int(bbox[2] * w / target_width), | |
| int(bbox[3] * h / target_height), | |
| ] | |
| bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0 | |
| bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0 | |
| bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w | |
| bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h | |
| # IoUs = torch.zeros(len(masks), dtype=torch.float32) | |
| bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) | |
| masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2)) | |
| orig_masks_area = torch.sum(masks, dim=(1, 2)) | |
| union = bbox_area + orig_masks_area - masks_area | |
| IoUs = masks_area / union | |
| max_iou_index = torch.argmax(IoUs) | |
| return masks[max_iou_index].cpu().numpy(), max_iou_index | |
| def point_prompt(masks, points, pointlabel, target_height, target_width): # numpy 处理 | |
| h = masks[0]["segmentation"].shape[0] | |
| w = masks[0]["segmentation"].shape[1] | |
| if h != target_height or w != target_width: | |
| points = [ | |
| [int(point[0] * w / target_width), int(point[1] * h / target_height)] | |
| for point in points | |
| ] | |
| onemask = np.zeros((h, w)) | |
| for i, annotation in enumerate(masks): | |
| if type(annotation) == dict: | |
| mask = annotation["segmentation"] | |
| else: | |
| mask = annotation | |
| for i, point in enumerate(points): | |
| if mask[point[1], point[0]] == 1 and pointlabel[i] == 1: | |
| onemask += mask | |
| if mask[point[1], point[0]] == 1 and pointlabel[i] == 0: | |
| onemask -= mask | |
| onemask = onemask >= 1 | |
| return onemask, 0 | |
| # def text_prompt(annotations, args): | |
| # cropped_boxes, cropped_images, not_crop, filter_id, annotaions = crop_image( | |
| # annotations, args.img_path | |
| # ) | |
| # clip_model, preprocess = clip.load("ViT-B/32", device=args.device) | |
| # scores = retriev( | |
| # clip_model, preprocess, cropped_boxes, args.text_prompt, device=args.device | |
| # ) | |
| # max_idx = scores.argsort() | |
| # max_idx = max_idx[-1] | |
| # max_idx += sum(np.array(filter_id) <= int(max_idx)) | |
| # return annotaions[max_idx]["segmentation"], max_idx | |