File size: 9,247 Bytes
36b4088
99c30a1
 
 
 
 
36b4088
 
 
 
99c30a1
36b4088
 
 
 
55a6c23
36b4088
 
 
 
 
 
 
 
 
 
 
55a6c23
36b4088
 
 
 
 
 
 
 
 
55a6c23
36b4088
 
 
 
 
 
 
 
 
55a6c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b4088
 
 
55a6c23
36b4088
 
 
 
 
 
55a6c23
36b4088
 
 
99c30a1
36b4088
 
 
 
 
 
 
 
 
 
99c30a1
36b4088
 
 
 
 
 
 
 
 
 
 
 
 
99c30a1
36b4088
 
 
99c30a1
36b4088
99c30a1
36b4088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a6c23
36b4088
 
 
 
 
 
 
99c30a1
36b4088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c30a1
36b4088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c30a1
55a6c23
36b4088
99c30a1
 
36b4088
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# app.py — ClimaMind on Hugging Face Spaces (Gradio)
# Modes:
#   PROVIDER=hf_model (default) -> calls HF Inference API for K2 (recommended for demo)
#   PROVIDER=local              -> loads model with transformers (requires GPU Space)
#   PROVIDER=stub               -> offline canned answers

import os, time, json, random
import requests
import gradio as gr

# -------- Config --------
PROVIDER = os.getenv("PROVIDER", "hf_model").strip()
MODEL_ID = os.getenv("MODEL_ID", "MBZUAI-IFM/K2-Think-SFT").strip()
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()

# -------- HTTP helper --------
def _get(url, params=None, headers=None, timeout=12, retries=2, backoff=1.6):
    for i in range(retries + 1):
        try:
            r = requests.get(url, params=params, headers=headers, timeout=timeout)
            r.raise_for_status()
            return r
        except Exception:
            if i == retries:
                raise
            time.sleep((backoff ** i) + random.random() * 0.25)

# -------- Geocode (free) --------
def geocode_city(city:str):
    r = _get("https://nominatim.openstreetmap.org/search",
             params={"q": city, "format": "json", "limit": 1},
             headers={"User-Agent": "climamind-space"})
    j = r.json()
    if not j:
        raise RuntimeError("City not found")
    return {"lat": float(j[0]["lat"]), "lon": float(j[0]["lon"]), "name": j[0]["display_name"]}

# -------- Weather (Open-Meteo, free) --------
def fetch_open_meteo(lat, lon):
    r = _get("https://api.open-meteo.com/v1/forecast", params={
        "latitude": lat, "longitude": lon,
        "current": "temperature_2m,relative_humidity_2m,wind_speed_10m,precipitation,uv_index",
        "hourly": "temperature_2m,relative_humidity_2m,wind_speed_10m,precipitation_probability,uv_index",
        "timezone": "auto"
    })
    return r.json()

# -------- PM2.5 (Open-Meteo Air-Quality, free; replaces OpenAQ v3 which now needs a key) --------
def fetch_pm25(lat, lon):
    try:
        r = _get("https://air-quality-api.open-meteo.com/v1/air-quality", params={
            "latitude": lat, "longitude": lon, "hourly": "pm2_5", "timezone": "auto"
        }, headers={"User-Agent": "climamind-space"})
        j = r.json()
        # take the most recent hour
        hourly = j.get("hourly", {})
        values = hourly.get("pm2_5") or []
        if values:
            return values[-1]
    except Exception:
        pass
    return None  # graceful fallback

def fetch_factors(lat, lon):
    wx = fetch_open_meteo(lat, lon)
    cur = wx.get("current", {}) or {}
    factors = {
        "temp_c": cur.get("temperature_2m"),
        "rh": cur.get("relative_humidity_2m"),
        "wind_kmh": cur.get("wind_speed_10m"),
        "precip_mm": cur.get("precipitation"),
        "uv": cur.get("uv_index"),
        "pm25": fetch_pm25(lat, lon),
    }
    return {"factors": factors, "raw": wx}

# -------- Indices --------
def drying_index(temp_c, rh, wind_kmh, cloud_frac=None):
    base = (temp_c or 0) * 1.2 + (wind_kmh or 0) * 0.8 - (rh or 0) * 0.9
    if cloud_frac is not None:
        base -= 20 * cloud_frac
    return max(0, min(100, round(base)))

def heat_stress_index(temp_c, rh, wind_kmh):
    hs = (temp_c or 0) * 1.1 + (rh or 0) * 0.3 - (wind_kmh or 0) * 0.2
    return max(0, min(100, round(hs)))

# -------- Prompt --------
PROMPT = """You are ClimaMind, a climate reasoning assistant. Use ONLY the observations provided and return STRICT JSON.

Location: {loc} (lat={lat}, lon={lon}), local time: {t_local}
Observations: temp={temp_c}°C, rh={rh}%, wind={wind_kmh} km/h, precip={precip_mm} mm, uv={uv}, pm25={pm25}
Derived: drying_index={d_idx}, heat_stress_index={hs_idx}

Task: Answer the user’s query: "{query}" for the next 24 hours.
Steps:
 1) Identify the relevant factors.
 2) Reason causally (2–3 steps).
 3) Give a concise recommendation with time window(s) and a confidence.
 4) Output a short WHY-TRACE (3 bullets).
Return JSON ONLY:
{
 "answer": "...",
 "why_trace": ["...", "...", "..."],
 "risk_badge": "Low"|"Moderate"|"High"
}"""

# -------- Reasoning providers --------
def call_stub(_prompt:str)->str:
    return json.dumps({
        "answer": "Based on 32°C, 50% RH and 12 km/h wind, cotton dries in ~2–3h (faster after 2pm).",
        "why_trace": [
            "Higher temperature and wind increase evaporation rate",
            "Moderate humidity slightly slows drying",
            "Lower afternoon cloud cover speeds it up"
        ],
        "risk_badge": "Low"
    })

def call_hf_model(prompt:str)->str:
    from huggingface_hub import InferenceClient
    client = InferenceClient(model=MODEL_ID, token=(HF_TOKEN or None))
    out = client.text_generation(
        prompt,
        max_new_tokens=200,
        temperature=0.1,
        repetition_penalty=1.05,
        do_sample=False,
    )
    return str(out)

_local_loaded = False
def _ensure_local_loaded():
    # Optional local load — requires GPU Space
    global _local_loaded, tokenizer, model
    if _local_loaded:
        return
    from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
    bnb_cfg = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype="bfloat16",
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )
    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        trust_remote_code=True,
        device_map="auto",           # allows CPU offload if needed
        quantization_config=bnb_cfg,
        low_cpu_mem_usage=True,
    )
    _local_loaded = True

def call_local(prompt:str)->str:
    _ensure_local_loaded()
    if hasattr(tokenizer, "apply_chat_template"):
        messages = [{"role":"user","content":prompt}]
        inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt").to(model.device)
    else:
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        out = model.generate(
            **inputs,
            max_new_tokens=200,
            temperature=0.1,
            do_sample=False,
            repetition_penalty=1.05,
            eos_token_id=tokenizer.eos_token_id,
        )
    return tokenizer.decode(out[0], skip_special_tokens=True)

def reason_answer(loc, coords, factors, query):
    d_idx = drying_index(factors.get("temp_c"), factors.get("rh"), factors.get("wind_kmh"))
    hs_idx = heat_stress_index(factors.get("temp_c"), factors.get("rh"), factors.get("wind_kmh"))
    t_local = time.strftime("%Y-%m-%d %H:%M")
    prompt = PROMPT.format(
        loc=loc, lat=coords["lat"], lon=coords["lon"], t_local=t_local,
        temp_c=factors.get("temp_c"), rh=factors.get("rh"), wind_kmh=factors.get("wind_kmh"),
        precip_mm=factors.get("precip_mm"), uv=factors.get("uv"), pm25=factors.get("pm25"),
        d_idx=d_idx, hs_idx=hs_idx, query=query
    )

    if PROVIDER == "hf_model":
        raw = call_hf_model(prompt)
    elif PROVIDER == "local":
        raw = call_local(prompt)
    else:
        raw = call_stub(prompt)

    start, end = raw.find("{"), raw.rfind("}")
    if start == -1 or end == -1:
        return {
            "answer": "The reasoning service returned non-JSON text. Please try again.",
            "why_trace": ["Response formatting issue", "Low temperature helps", "Retry the query"],
            "risk_badge": "Low"
        }
    try:
        return json.loads(raw[start:end+1])
    except Exception:
        return {
            "answer": "Failed to parse JSON from model output.",
            "why_trace": ["JSON parsing error", "Reduce tokens/temperature", "Retry once"],
            "risk_badge": "Low"
        }

# -------- Gradio UI --------
def app(city, question):
    geo = geocode_city(city)
    data = fetch_factors(geo["lat"], geo["lon"])
    ans = reason_answer(
        geo["name"], {"lat": geo["lat"], "lon": geo["lon"]},
        data["factors"], question
    )
    fx = ", ".join([f"{k}={v}" for k, v in data["factors"].items()])
    why_list = ans.get("why_trace") or []
    why = "\n• " + "\n• ".join(why_list) if why_list else "\n• (no trace returned)"
    md = (
        f"**Answer:** {ans.get('answer','(no answer)')}\n\n"
        f"**Why-trace:**{why}\n\n"
        f"**Risk:** {ans.get('risk_badge','N/A')}\n\n"
        f"**Factors:** {fx}"
    )
    return md

demo = gr.Interface(
    fn=app,
    inputs=[
        gr.Textbox(label="City", value="New Delhi"),
        gr.Dropdown(
            choices=[
                "If I wash clothes now, when will they dry?",
                "Should I water my plants today or wait?",
                "What is the heat/wildfire risk today? Explain briefly."
            ],
            label="Question",
            value="If I wash clothes now, when will they dry?"
        )
    ],
    outputs=gr.Markdown(label="ClimaMind"),
    title="ClimaMind — K2-Think + Live Climate Data",
    description="Provider = hf_model (Inference API) | local (GPU Space) | stub (offline). Configure env in Space settings.",
    allow_flagging="never",
    concurrency_limit=2,
)

demo.queue(max_size=8)

if __name__ == "__main__":
    demo.launch()