Spaces:
Sleeping
Sleeping
update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
from spacy.lang.en import English
|
| 2 |
-
|
| 3 |
-
nlp = English()
|
| 4 |
-
nlp.add_pipe("sentencizer")
|
| 5 |
-
|
| 6 |
import pandas as pd
|
| 7 |
import gradio as gr
|
| 8 |
-
|
| 9 |
from transformers import pipeline
|
| 10 |
from gradio.themes.utils.colors import red, green
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
detector = pipeline(task='text-classification', model='SJTU-CL/RoBERTa-large-ArguGPT-sent')
|
| 13 |
|
|
|
|
| 14 |
color_map = {
|
| 15 |
'0%': green.c400,
|
| 16 |
'10%': green.c300,
|
|
@@ -25,9 +26,7 @@ color_map = {
|
|
| 25 |
'100%': red.c500
|
| 26 |
}
|
| 27 |
|
| 28 |
-
|
| 29 |
def predict_doc(doc):
|
| 30 |
-
# sents = sent_tokenize(doc)
|
| 31 |
sents = [s.text for s in nlp(doc).sents]
|
| 32 |
data = {'sentence': [], 'label': [], 'score': []}
|
| 33 |
res = []
|
|
@@ -41,72 +40,83 @@ def predict_doc(doc):
|
|
| 41 |
else:
|
| 42 |
data['label'].append('Machine')
|
| 43 |
|
| 44 |
-
if prob < 0.1:
|
| 45 |
-
|
| 46 |
-
elif prob < 0.
|
| 47 |
-
|
| 48 |
-
elif prob < 0.
|
| 49 |
-
|
| 50 |
-
elif prob < 0.
|
| 51 |
-
|
| 52 |
-
elif prob < 0.
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
label = '50%'
|
| 56 |
-
elif prob < 0.7:
|
| 57 |
-
label = '60%'
|
| 58 |
-
elif prob < 0.8:
|
| 59 |
-
label = '70%'
|
| 60 |
-
elif prob < 0.9:
|
| 61 |
-
label = '80%'
|
| 62 |
-
elif prob < 1:
|
| 63 |
-
label = '90%'
|
| 64 |
-
else:
|
| 65 |
-
label = '100%'
|
| 66 |
res.append((sent, label))
|
| 67 |
|
| 68 |
df = pd.DataFrame(data)
|
| 69 |
df.to_csv('result.csv')
|
| 70 |
overall_score = df.score.mean()
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
overall_label = 'Human'
|
| 74 |
-
else:
|
| 75 |
-
overall_label = 'Machine'
|
| 76 |
-
sum_str = f'The essay is probably written by {overall_label}. The probability of being generated by AI is {overall_score}'
|
| 77 |
|
| 78 |
return sum_str, res, df, 'result.csv'
|
| 79 |
|
| 80 |
-
|
| 81 |
def predict_one_sent(sent):
|
| 82 |
-
'''
|
| 83 |
-
convert to prob
|
| 84 |
-
LABEL_1, 0.66 -> 0.66
|
| 85 |
-
LABEL_0, 0.66 -> 0.34
|
| 86 |
-
'''
|
| 87 |
res = detector(sent)[0]
|
| 88 |
org_label, prob = res['label'], res['score']
|
| 89 |
if org_label == 'LABEL_0': prob = 1 - prob
|
| 90 |
return prob
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
| 94 |
with gr.Row():
|
| 95 |
with gr.Column():
|
| 96 |
text_in = gr.Textbox(
|
| 97 |
-
lines=5,
|
| 98 |
-
label='Essay
|
| 99 |
-
info='Please enter the essay in the textbox'
|
|
|
|
| 100 |
)
|
| 101 |
-
btn = gr.Button('Predict who writes this essay!')
|
| 102 |
|
| 103 |
sent_res = gr.HighlightedText(label='Labeled Result', color_map=color_map)
|
| 104 |
-
|
| 105 |
with gr.Row():
|
| 106 |
-
summary = gr.Text(label='Result
|
| 107 |
-
csv_f = gr.File(label='CSV
|
| 108 |
|
| 109 |
tab = gr.Dataframe(label='Table with Probability Score', row_count=100)
|
| 110 |
btn.click(predict_doc, inputs=[text_in], outputs=[summary, sent_res, tab, csv_f], api_name='predict_doc')
|
| 111 |
|
| 112 |
-
demo.launch()
|
|
|
|
| 1 |
from spacy.lang.en import English
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from transformers import pipeline
|
| 5 |
from gradio.themes.utils.colors import red, green
|
| 6 |
|
| 7 |
+
# Initialize the NLP pipeline
|
| 8 |
+
nlp = English()
|
| 9 |
+
nlp.add_pipe("sentencizer")
|
| 10 |
+
|
| 11 |
+
# Initialize the text classification pipeline
|
| 12 |
detector = pipeline(task='text-classification', model='SJTU-CL/RoBERTa-large-ArguGPT-sent')
|
| 13 |
|
| 14 |
+
# Define color map for highlighted text
|
| 15 |
color_map = {
|
| 16 |
'0%': green.c400,
|
| 17 |
'10%': green.c300,
|
|
|
|
| 26 |
'100%': red.c500
|
| 27 |
}
|
| 28 |
|
|
|
|
| 29 |
def predict_doc(doc):
|
|
|
|
| 30 |
sents = [s.text for s in nlp(doc).sents]
|
| 31 |
data = {'sentence': [], 'label': [], 'score': []}
|
| 32 |
res = []
|
|
|
|
| 40 |
else:
|
| 41 |
data['label'].append('Machine')
|
| 42 |
|
| 43 |
+
if prob < 0.1: label = '0%'
|
| 44 |
+
elif prob < 0.2: label = '10%'
|
| 45 |
+
elif prob < 0.3: label = '20%'
|
| 46 |
+
elif prob < 0.4: label = '30%'
|
| 47 |
+
elif prob < 0.5: label = '40%'
|
| 48 |
+
elif prob < 0.6: label = '50%'
|
| 49 |
+
elif prob < 0.7: label = '60%'
|
| 50 |
+
elif prob < 0.8: label = '70%'
|
| 51 |
+
elif prob < 0.9: label = '80%'
|
| 52 |
+
elif prob < 1: label = '90%'
|
| 53 |
+
else: label = '100%'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
res.append((sent, label))
|
| 55 |
|
| 56 |
df = pd.DataFrame(data)
|
| 57 |
df.to_csv('result.csv')
|
| 58 |
overall_score = df.score.mean()
|
| 59 |
+
overall_label = 'Human' if overall_score <= 0.5 else 'Machine'
|
| 60 |
+
sum_str = f'The essay is probably written by {overall_label}. The probability of being generated by AI is {overall_score:.2f}'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
return sum_str, res, df, 'result.csv'
|
| 63 |
|
|
|
|
| 64 |
def predict_one_sent(sent):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
res = detector(sent)[0]
|
| 66 |
org_label, prob = res['label'], res['score']
|
| 67 |
if org_label == 'LABEL_0': prob = 1 - prob
|
| 68 |
return prob
|
| 69 |
|
| 70 |
+
# Custom CSS for modern look
|
| 71 |
+
custom_css = """
|
| 72 |
+
.gradio-container {
|
| 73 |
+
font-family: 'Arial', sans-serif;
|
| 74 |
+
}
|
| 75 |
+
.gradio-header {
|
| 76 |
+
background-color: #4CAF50;
|
| 77 |
+
color: white;
|
| 78 |
+
padding: 10px;
|
| 79 |
+
text-align: center;
|
| 80 |
+
}
|
| 81 |
+
.gradio-button {
|
| 82 |
+
background-color: #4CAF50;
|
| 83 |
+
color: white;
|
| 84 |
+
border: none;
|
| 85 |
+
padding: 10px 20px;
|
| 86 |
+
text-align: center;
|
| 87 |
+
text-decoration: none;
|
| 88 |
+
display: inline-block;
|
| 89 |
+
font-size: 16px;
|
| 90 |
+
margin: 4px 2px;
|
| 91 |
+
cursor: pointer;
|
| 92 |
+
border-radius: 5px;
|
| 93 |
+
}
|
| 94 |
+
.gradio-button:hover {
|
| 95 |
+
background-color: #45a049;
|
| 96 |
+
}
|
| 97 |
+
"""
|
| 98 |
|
| 99 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 100 |
+
gr.Markdown("## AI vs Human Essay Detector")
|
| 101 |
+
gr.Markdown("This tool helps you determine whether an essay is written by a human or generated by AI.")
|
| 102 |
+
|
| 103 |
with gr.Row():
|
| 104 |
with gr.Column():
|
| 105 |
text_in = gr.Textbox(
|
| 106 |
+
lines=5,
|
| 107 |
+
label='Essay Input',
|
| 108 |
+
info='Please enter the essay in the textbox',
|
| 109 |
+
placeholder="Paste your essay here..."
|
| 110 |
)
|
| 111 |
+
btn = gr.Button('Predict who writes this essay!', variant="primary")
|
| 112 |
|
| 113 |
sent_res = gr.HighlightedText(label='Labeled Result', color_map=color_map)
|
| 114 |
+
|
| 115 |
with gr.Row():
|
| 116 |
+
summary = gr.Text(label='Result Summary')
|
| 117 |
+
csv_f = gr.File(label='CSV File Storing Data with All Sentences')
|
| 118 |
|
| 119 |
tab = gr.Dataframe(label='Table with Probability Score', row_count=100)
|
| 120 |
btn.click(predict_doc, inputs=[text_in], outputs=[summary, sent_res, tab, csv_f], api_name='predict_doc')
|
| 121 |
|
| 122 |
+
demo.launch()
|