Spaces:
Runtime error
Runtime error
Loli-Killer
commited on
Commit
Β·
1a696b5
1
Parent(s):
53fe34a
Added protein_bind methods
Browse files- .gitignore +1 -0
- app.py +32 -23
- proteinbind_new.py +10 -9
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
env/
|
app.py
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
# credit: https://huggingface.co/spaces/simonduerr/3dmol.js/blob/main/app.py
|
| 2 |
-
from typing import Tuple
|
| 3 |
import os
|
| 4 |
import sys
|
| 5 |
from urllib import request
|
| 6 |
|
|
|
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
import requests
|
| 9 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM, EsmModel, AutoModel
|
| 10 |
import torch
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
|
| 14 |
import msa
|
| 15 |
-
|
| 16 |
|
| 17 |
tokenizer_nt = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
| 18 |
model_nt = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
|
@@ -30,6 +30,15 @@ msa_transformer, msa_transformer_alphabet = esm.pretrained.esm_msa1b_t12_100M_UR
|
|
| 30 |
msa_transformer = msa_transformer.eval()
|
| 31 |
msa_transformer_batch_converter = msa_transformer_alphabet.get_batch_converter()
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def nt_embed(sequence: str):
|
|
@@ -37,38 +46,38 @@ def nt_embed(sequence: str):
|
|
| 37 |
attention_mask = tokens_ids != tokenizer_nt.pad_token_id
|
| 38 |
with torch.no_grad():
|
| 39 |
torch_outs = model_nt(
|
| 40 |
-
tokens_ids
|
| 41 |
-
attention_mask=attention_mask
|
| 42 |
output_hidden_states=True
|
| 43 |
)
|
| 44 |
last_layer_CLS = torch_outs.hidden_states[-1].detach()[:, 0, :][0]
|
| 45 |
-
return last_layer_CLS
|
| 46 |
|
| 47 |
|
| 48 |
def aa_embed(sequence: str):
|
| 49 |
tokens = tokenizer_aa([sequence], return_tensors="pt")
|
| 50 |
with torch.no_grad():
|
| 51 |
torch_outs = model_aa(**tokens)
|
| 52 |
-
return torch_outs[0]
|
| 53 |
|
| 54 |
|
| 55 |
def se_embed(sentence: str):
|
| 56 |
encoded_input = tokenizer_se([sentence], return_tensors='pt')
|
| 57 |
with torch.no_grad():
|
| 58 |
model_output = model_se(**encoded_input)
|
| 59 |
-
return model_output[0]
|
| 60 |
|
| 61 |
|
| 62 |
def msa_embed(sequences: list):
|
| 63 |
-
inputs = msa.greedy_select(sequences, num_seqs=128)
|
| 64 |
msa_transformer_batch_labels, msa_transformer_batch_strs, msa_transformer_batch_tokens = msa_transformer_batch_converter([inputs])
|
| 65 |
msa_transformer_batch_tokens = msa_transformer_batch_tokens.to(next(msa_transformer.parameters()).device)
|
| 66 |
-
|
| 67 |
with torch.no_grad():
|
| 68 |
-
temp = msa_transformer(msa_transformer_batch_tokens,repr_layers=[12])['representations']
|
| 69 |
-
temp = temp[12][
|
| 70 |
-
temp = torch.mean(temp,(0,1))
|
| 71 |
-
return temp
|
| 72 |
|
| 73 |
|
| 74 |
def go_embed(terms):
|
|
@@ -79,13 +88,13 @@ def download_data_if_required():
|
|
| 79 |
url_base = f"https://zenodo.org/record/{pg.zenodo_record}/files"
|
| 80 |
fps = [pg.trained_model_fp]
|
| 81 |
urls = [f"{url_base}/trained_model.pt"]
|
| 82 |
-
#for targetdb in pre_embedded_dbs:
|
| 83 |
# fps.append(os.path.join(database_dir, targetdb + ".pt"))
|
| 84 |
# urls.append(f"{url_base}/{targetdb}.pt")
|
| 85 |
|
| 86 |
if not os.path.isdir(pg.trained_model_dir):
|
| 87 |
os.makedirs(pg.trained_model_dir)
|
| 88 |
-
#if not os.path.isdir(database_dir):
|
| 89 |
# os.makedirs(database_dir)
|
| 90 |
|
| 91 |
printed = False
|
|
@@ -103,7 +112,7 @@ def download_data_if_required():
|
|
| 103 |
assert "model" in d
|
| 104 |
else:
|
| 105 |
assert "embeddings" in d
|
| 106 |
-
except:
|
| 107 |
if os.path.isfile(fp):
|
| 108 |
os.remove(fp)
|
| 109 |
print("Failed to download from", url, "and save to", fp, file=sys.stderr)
|
|
@@ -119,7 +128,7 @@ def get_pdb(pdb_code="", filepath=""):
|
|
| 119 |
try:
|
| 120 |
with open(filepath.name) as f:
|
| 121 |
return f.read()
|
| 122 |
-
except AttributeError
|
| 123 |
return None
|
| 124 |
else:
|
| 125 |
return requests.get(f"https://files.rcsb.org/view/{pdb_code}.pdb").content.decode()
|
|
@@ -150,12 +159,12 @@ def molecule(pdb):
|
|
| 150 |
</head>
|
| 151 |
<body>
|
| 152 |
<div id="container" class="mol-container"></div>
|
| 153 |
-
|
| 154 |
<script>
|
| 155 |
let pdb = `"""
|
| 156 |
+ pdb
|
| 157 |
+ """`
|
| 158 |
-
|
| 159 |
$(document).ready(function () {
|
| 160 |
let element = $("#container");
|
| 161 |
let config = { backgroundColor: "black" };
|
|
@@ -272,4 +281,4 @@ with demo:
|
|
| 272 |
|
| 273 |
if __name__ == "__main__":
|
| 274 |
download_data_if_required()
|
| 275 |
-
demo.launch()
|
|
|
|
| 1 |
# credit: https://huggingface.co/spaces/simonduerr/3dmol.js/blob/main/app.py
|
|
|
|
| 2 |
import os
|
| 3 |
import sys
|
| 4 |
from urllib import request
|
| 5 |
|
| 6 |
+
import esm
|
| 7 |
import gradio as gr
|
| 8 |
+
import progres as pg
|
| 9 |
import requests
|
|
|
|
| 10 |
import torch
|
| 11 |
+
from transformers import (AutoModel, AutoModelForMaskedLM, AutoTokenizer,
|
| 12 |
+
EsmModel)
|
| 13 |
|
| 14 |
import msa
|
| 15 |
+
import proteinbind_new
|
| 16 |
|
| 17 |
tokenizer_nt = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
| 18 |
model_nt = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
|
|
|
| 30 |
msa_transformer = msa_transformer.eval()
|
| 31 |
msa_transformer_batch_converter = msa_transformer_alphabet.get_batch_converter()
|
| 32 |
|
| 33 |
+
model = proteinbind_new.create_proteinbind(True)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def pass_through(torch_output, key: str):
|
| 37 |
+
input_data = {
|
| 38 |
+
key: torch_output,
|
| 39 |
+
}
|
| 40 |
+
output = model(input_data)
|
| 41 |
+
return output[key]
|
| 42 |
|
| 43 |
|
| 44 |
def nt_embed(sequence: str):
|
|
|
|
| 46 |
attention_mask = tokens_ids != tokenizer_nt.pad_token_id
|
| 47 |
with torch.no_grad():
|
| 48 |
torch_outs = model_nt(
|
| 49 |
+
tokens_ids, # .to('cuda'),
|
| 50 |
+
attention_mask=attention_mask, # .to('cuda'),
|
| 51 |
output_hidden_states=True
|
| 52 |
)
|
| 53 |
last_layer_CLS = torch_outs.hidden_states[-1].detach()[:, 0, :][0]
|
| 54 |
+
return pass_through(last_layer_CLS, "dna")
|
| 55 |
|
| 56 |
|
| 57 |
def aa_embed(sequence: str):
|
| 58 |
tokens = tokenizer_aa([sequence], return_tensors="pt")
|
| 59 |
with torch.no_grad():
|
| 60 |
torch_outs = model_aa(**tokens)
|
| 61 |
+
return pass_through(torch_outs[0], "aa")
|
| 62 |
|
| 63 |
|
| 64 |
def se_embed(sentence: str):
|
| 65 |
encoded_input = tokenizer_se([sentence], return_tensors='pt')
|
| 66 |
with torch.no_grad():
|
| 67 |
model_output = model_se(**encoded_input)
|
| 68 |
+
return pass_through(model_output[0], "text")
|
| 69 |
|
| 70 |
|
| 71 |
def msa_embed(sequences: list):
|
| 72 |
+
inputs = msa.greedy_select(sequences, num_seqs=128) # can change this to pass more/fewer sequences
|
| 73 |
msa_transformer_batch_labels, msa_transformer_batch_strs, msa_transformer_batch_tokens = msa_transformer_batch_converter([inputs])
|
| 74 |
msa_transformer_batch_tokens = msa_transformer_batch_tokens.to(next(msa_transformer.parameters()).device)
|
| 75 |
+
|
| 76 |
with torch.no_grad():
|
| 77 |
+
temp = msa_transformer(msa_transformer_batch_tokens, repr_layers=[12])['representations']
|
| 78 |
+
temp = temp[12][:, :, 0, :]
|
| 79 |
+
temp = torch.mean(temp, (0, 1))
|
| 80 |
+
return pass_through(temp, "msa")
|
| 81 |
|
| 82 |
|
| 83 |
def go_embed(terms):
|
|
|
|
| 88 |
url_base = f"https://zenodo.org/record/{pg.zenodo_record}/files"
|
| 89 |
fps = [pg.trained_model_fp]
|
| 90 |
urls = [f"{url_base}/trained_model.pt"]
|
| 91 |
+
# for targetdb in pre_embedded_dbs:
|
| 92 |
# fps.append(os.path.join(database_dir, targetdb + ".pt"))
|
| 93 |
# urls.append(f"{url_base}/{targetdb}.pt")
|
| 94 |
|
| 95 |
if not os.path.isdir(pg.trained_model_dir):
|
| 96 |
os.makedirs(pg.trained_model_dir)
|
| 97 |
+
# if not os.path.isdir(database_dir):
|
| 98 |
# os.makedirs(database_dir)
|
| 99 |
|
| 100 |
printed = False
|
|
|
|
| 112 |
assert "model" in d
|
| 113 |
else:
|
| 114 |
assert "embeddings" in d
|
| 115 |
+
except Exception:
|
| 116 |
if os.path.isfile(fp):
|
| 117 |
os.remove(fp)
|
| 118 |
print("Failed to download from", url, "and save to", fp, file=sys.stderr)
|
|
|
|
| 128 |
try:
|
| 129 |
with open(filepath.name) as f:
|
| 130 |
return f.read()
|
| 131 |
+
except AttributeError:
|
| 132 |
return None
|
| 133 |
else:
|
| 134 |
return requests.get(f"https://files.rcsb.org/view/{pdb_code}.pdb").content.decode()
|
|
|
|
| 159 |
</head>
|
| 160 |
<body>
|
| 161 |
<div id="container" class="mol-container"></div>
|
| 162 |
+
|
| 163 |
<script>
|
| 164 |
let pdb = `"""
|
| 165 |
+ pdb
|
| 166 |
+ """`
|
| 167 |
+
|
| 168 |
$(document).ready(function () {
|
| 169 |
let element = $("#container");
|
| 170 |
let config = { backgroundColor: "black" };
|
|
|
|
| 281 |
|
| 282 |
if __name__ == "__main__":
|
| 283 |
download_data_if_required()
|
| 284 |
+
demo.launch()
|
proteinbind_new.py
CHANGED
|
@@ -15,6 +15,7 @@ ModalityType = SimpleNamespace(
|
|
| 15 |
TEXT="text",
|
| 16 |
)
|
| 17 |
|
|
|
|
| 18 |
class Normalize(nn.Module):
|
| 19 |
def __init__(self, dim: int) -> None:
|
| 20 |
super().__init__()
|
|
@@ -23,6 +24,7 @@ class Normalize(nn.Module):
|
|
| 23 |
def forward(self, x):
|
| 24 |
return torch.nn.functional.normalize(x, dim=self.dim, p=2)
|
| 25 |
|
|
|
|
| 26 |
class EmbeddingDataset(Dataset):
|
| 27 |
"""
|
| 28 |
The main class for turning any modality to a torch Dataset that can be passed to
|
|
@@ -42,6 +44,7 @@ class EmbeddingDataset(Dataset):
|
|
| 42 |
embedding = self.embedding[idx]
|
| 43 |
return {"aa": sequence, self.modality: embedding}
|
| 44 |
|
|
|
|
| 45 |
class DualEmbeddingDataset(Dataset):
|
| 46 |
"""
|
| 47 |
The main class for turning any modality to a torch Dataset that can be passed to
|
|
@@ -60,7 +63,8 @@ class DualEmbeddingDataset(Dataset):
|
|
| 60 |
sequence_embedding = self.sequence_embedding[idx]
|
| 61 |
embedding = self.embedding[idx]
|
| 62 |
return {"aa": sequence_embedding, self.modality: embedding}
|
| 63 |
-
|
|
|
|
| 64 |
class ProteinBindModel(nn.Module):
|
| 65 |
|
| 66 |
def __init__(
|
|
@@ -92,7 +96,6 @@ class ProteinBindModel(nn.Module):
|
|
| 92 |
out_embed_dim
|
| 93 |
)
|
| 94 |
|
| 95 |
-
|
| 96 |
def _create_modality_trunk(
|
| 97 |
self,
|
| 98 |
aa_embed_dim,
|
|
@@ -140,7 +143,7 @@ class ProteinBindModel(nn.Module):
|
|
| 140 |
nn.ReLU(),
|
| 141 |
nn.Linear(512, in_embed_dim),
|
| 142 |
)
|
| 143 |
-
|
| 144 |
modality_trunks[ModalityType.GO] = nn.Sequential(
|
| 145 |
nn.Linear(go_embed_dim, 512),
|
| 146 |
nn.ReLU(),
|
|
@@ -220,7 +223,6 @@ class ProteinBindModel(nn.Module):
|
|
| 220 |
modality_postprocessors[ModalityType.GO] = Normalize(dim=-1)
|
| 221 |
modality_postprocessors[ModalityType.MSA] = Normalize(dim=-1)
|
| 222 |
|
| 223 |
-
|
| 224 |
return nn.ModuleDict(modality_postprocessors)
|
| 225 |
|
| 226 |
def forward(self, inputs):
|
|
@@ -239,7 +241,6 @@ class ProteinBindModel(nn.Module):
|
|
| 239 |
|
| 240 |
for modality_key, modality_value in inputs.items():
|
| 241 |
|
| 242 |
-
|
| 243 |
modality_value = self.modality_trunks[modality_key](
|
| 244 |
modality_value
|
| 245 |
)
|
|
@@ -247,10 +248,10 @@ class ProteinBindModel(nn.Module):
|
|
| 247 |
modality_value = self.modality_heads[modality_key](
|
| 248 |
modality_value
|
| 249 |
)
|
| 250 |
-
|
| 251 |
modality_value = self.modality_postprocessors[modality_key](
|
| 252 |
-
|
| 253 |
-
|
| 254 |
outputs[modality_key] = modality_value
|
| 255 |
|
| 256 |
return outputs
|
|
@@ -274,7 +275,7 @@ def create_proteinbind(pretrained=False):
|
|
| 274 |
)
|
| 275 |
|
| 276 |
if pretrained:
|
| 277 |
-
#get path from config
|
| 278 |
PATH = 'best_model.pth'
|
| 279 |
|
| 280 |
model.load_state_dict(torch.load(PATH))
|
|
|
|
| 15 |
TEXT="text",
|
| 16 |
)
|
| 17 |
|
| 18 |
+
|
| 19 |
class Normalize(nn.Module):
|
| 20 |
def __init__(self, dim: int) -> None:
|
| 21 |
super().__init__()
|
|
|
|
| 24 |
def forward(self, x):
|
| 25 |
return torch.nn.functional.normalize(x, dim=self.dim, p=2)
|
| 26 |
|
| 27 |
+
|
| 28 |
class EmbeddingDataset(Dataset):
|
| 29 |
"""
|
| 30 |
The main class for turning any modality to a torch Dataset that can be passed to
|
|
|
|
| 44 |
embedding = self.embedding[idx]
|
| 45 |
return {"aa": sequence, self.modality: embedding}
|
| 46 |
|
| 47 |
+
|
| 48 |
class DualEmbeddingDataset(Dataset):
|
| 49 |
"""
|
| 50 |
The main class for turning any modality to a torch Dataset that can be passed to
|
|
|
|
| 63 |
sequence_embedding = self.sequence_embedding[idx]
|
| 64 |
embedding = self.embedding[idx]
|
| 65 |
return {"aa": sequence_embedding, self.modality: embedding}
|
| 66 |
+
|
| 67 |
+
|
| 68 |
class ProteinBindModel(nn.Module):
|
| 69 |
|
| 70 |
def __init__(
|
|
|
|
| 96 |
out_embed_dim
|
| 97 |
)
|
| 98 |
|
|
|
|
| 99 |
def _create_modality_trunk(
|
| 100 |
self,
|
| 101 |
aa_embed_dim,
|
|
|
|
| 143 |
nn.ReLU(),
|
| 144 |
nn.Linear(512, in_embed_dim),
|
| 145 |
)
|
| 146 |
+
|
| 147 |
modality_trunks[ModalityType.GO] = nn.Sequential(
|
| 148 |
nn.Linear(go_embed_dim, 512),
|
| 149 |
nn.ReLU(),
|
|
|
|
| 223 |
modality_postprocessors[ModalityType.GO] = Normalize(dim=-1)
|
| 224 |
modality_postprocessors[ModalityType.MSA] = Normalize(dim=-1)
|
| 225 |
|
|
|
|
| 226 |
return nn.ModuleDict(modality_postprocessors)
|
| 227 |
|
| 228 |
def forward(self, inputs):
|
|
|
|
| 241 |
|
| 242 |
for modality_key, modality_value in inputs.items():
|
| 243 |
|
|
|
|
| 244 |
modality_value = self.modality_trunks[modality_key](
|
| 245 |
modality_value
|
| 246 |
)
|
|
|
|
| 248 |
modality_value = self.modality_heads[modality_key](
|
| 249 |
modality_value
|
| 250 |
)
|
| 251 |
+
|
| 252 |
modality_value = self.modality_postprocessors[modality_key](
|
| 253 |
+
modality_value
|
| 254 |
+
)
|
| 255 |
outputs[modality_key] = modality_value
|
| 256 |
|
| 257 |
return outputs
|
|
|
|
| 275 |
)
|
| 276 |
|
| 277 |
if pretrained:
|
| 278 |
+
# get path from config
|
| 279 |
PATH = 'best_model.pth'
|
| 280 |
|
| 281 |
model.load_state_dict(torch.load(PATH))
|