File size: 5,858 Bytes
1619dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import torch
import torchaudio
import numpy as np
import re
from pydub import AudioSegment
from settings import DEBUG_MODE, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ
import soundfile as sf

# ------------------ DEBUG UTILITIES ------------------
def debug_print(*args, **kwargs):
    if DEBUG_MODE:
        print(*args, **kwargs)

# ------------------ Device Settings ------------------
def get_settings():

    device = "cuda" if torch.cuda.is_available() else "cpu"
    compute_type = "default"

    if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")

    return device, compute_type

# ------------------ Audio Utilities ------------------
def split_input_stereo_channels(audio_path):

    ext = os.path.splitext(audio_path)[1].lower()

    if ext == ".wav":
        audio = AudioSegment.from_wav(audio_path)
    elif ext == ".mp3":
        audio = AudioSegment.from_file(audio_path, format="mp3")
    else:
        raise ValueError(f"[FORMAT AUDIO] Unsupported file format for: {audio_path}")

    channels = audio.split_to_mono()

    if len(channels) != 2:
        raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")

    channels[0].export(LEFT_CHANNEL_TEMP_PATH, format="wav")  
    channels[1].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") 


def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:

    compute_type = compute_type.lower()

    if device.startswith("cuda"):
        if "float16" in compute_type or "int8" in compute_type:
            audio_np_dtype = np.float16
        else:
            audio_np_dtype = np.float32
    else:
        audio_np_dtype = np.float32

    return audio_np_dtype

def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:

    input_audio, sample_rate = torchaudio.load(audio_path)

    if input_audio.shape[0] == 2:
        input_audio = torch.mean(input_audio, dim=0, keepdim=True)
    
    resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
    input_audio = resampler(input_audio)
    input_audio = input_audio.squeeze()

    np_dtype = compute_type_to_audio_dtype(compute_type, device)

    input_audio = input_audio.numpy().astype(np_dtype)

    if DEBUG_MODE: 
        print(f"[FORMAT AUDIO] Audio dtype for actual_compute_type: {input_audio.dtype}")
    return input_audio


def process_waveforms(device: str, compute_type: str):

    left_waveform  = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
    right_waveform = format_audio(RIGHT_CHANNEL_TEMP_PATH, compute_type, device)

    return left_waveform, right_waveform


# ------------------ Post-processing ------------------
def get_segments(result, speaker_label):

    segments = result
    final_segments = [
        (seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
        for seg in segments if seg.text
    ]

    return final_segments

def post_process_transcripts(left_result, right_result, civil_channel):

    if civil_channel == "Left":
        civil_segs = get_segments(left_result, "Civil")
        operador_segs = get_segments(right_result, "Operador")
    else:
        civil_segs = get_segments(right_result, "Civil")
        operador_segs = get_segments(left_result, "Operador")

    merged_transcript = sorted(
        operador_segs + civil_segs,
        key=lambda x: float(x[0]) if x[0] is not None else float("inf")
    )

    clean_output_asr = ""
    clean_output_meteo = ""
    for start, end, speaker, text in merged_transcript:
        clean_output_asr += f"[{speaker}]: {text}\n"
        clean_output_meteo += f"{text}"
    clean_output_asr = clean_output_asr.strip()
    clean_output_meteo = clean_output_meteo.strip()
 
    return clean_output_asr, clean_output_meteo


def post_process_transcription(transcription, max_repeats=2): 
    
    tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)

    cleaned_tokens = []
    repetition_count = 0
    previous_token = None

    for token in tokens:
        reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)

        if reduced_token == previous_token:
            repetition_count += 1
            if repetition_count <= max_repeats:
                cleaned_tokens.append(reduced_token)
        else:
            repetition_count = 1
            cleaned_tokens.append(reduced_token)

        previous_token = reduced_token

    cleaned_transcription = " ".join(cleaned_tokens)
    cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()

    return cleaned_transcription

# TODO not used right now, decide to use it or not
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
    segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
    merged_transcription = ''
    current_speaker = None
    current_segment = []

    for i in range(1, len(segments) - 1, 2):
        speaker_tag = segments[i]
        text = segments[i + 1].strip()

        speaker = re.search(r'\d{2}', speaker_tag).group()

        if speaker == current_speaker:
            current_segment.append(text)
        else:
            if current_speaker is not None:
                merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
            current_speaker = speaker
            current_segment = [text]

    if current_speaker is not None:
        merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'

    return merged_transcription.strip()

def cleanup_temp_files(*file_paths):
        
    for path in file_paths:
        if path and os.path.exists(path):
            os.remove(path)

def sec_to_hhmmss(seconds):
    h = int(seconds // 3600)
    m = int((seconds % 3600) // 60)
    s = int(seconds % 60)
    return f"{h:02d}:{m:02d}:{s:02d}"