File size: 11,510 Bytes
1619dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch import tensor
from transformers import Wav2Vec2FeatureExtractor, WavLMModel
import transformers.models.wavlm.modeling_wavlm as wavlm
from huggingface_hub import PyTorchModelHubMixin
from speechbrain.lobes.models.huggingface_transformers.huggingface import make_padding_masks


class RevGrad(Function):
    @staticmethod
    def forward(ctx, input_, alpha_):
        ctx.save_for_backward(input_, alpha_)
        return input_

    @staticmethod
    def backward(ctx, grad_output):
        _, alpha_ = ctx.saved_tensors
        grad_input = -grad_output * alpha_ if ctx.needs_input_grad[0] else None
        return grad_input, None


revgrad = RevGrad.apply


class RevGradLayer(nn.Module):
    def __init__(self, alpha=1.):
        super().__init__()
        self._alpha = tensor(alpha, requires_grad=False)

    def forward(self, x):
        return revgrad(x, self._alpha)


class WavLMEncoderLayer(nn.Module):
    def __init__(self, layer_idx, config, has_relative_position_bias: bool = True):
        super().__init__()
        self.attention = wavlm.WavLMAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            num_buckets=config.num_buckets,
            max_distance=config.max_bucket_distance,
            has_relative_position_bias=has_relative_position_bias,
        )
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.feed_forward = wavlm.WavLMFeedForward(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.config = config
    

    def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, index=0):
        attn_residual = hidden_states
        hidden_states, attn_weights, position_bias = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            output_attentions=output_attentions,
            index=index,
        )
        hidden_states = self.dropout(hidden_states)
        hidden_states = attn_residual + hidden_states
        
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = hidden_states + self.feed_forward(hidden_states)
        hidden_states = self.final_layer_norm(hidden_states)
        outputs = (hidden_states, position_bias)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class WavLMEncoderLayerStableLayerNorm(nn.Module):
    def __init__(self, layer_idx, config, has_relative_position_bias: bool = True):
        super().__init__()
        self.attention = wavlm.WavLMAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            num_buckets=config.num_buckets,
            max_distance=config.max_bucket_distance,
            has_relative_position_bias=has_relative_position_bias,
        )
        self.dropout = nn.Dropout(config.hidden_dropout)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.feed_forward = wavlm.WavLMFeedForward(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.config = config

    def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False):
        attn_residual = hidden_states
        hidden_states = self.layer_norm(hidden_states)
        hidden_states, attn_weights, position_bias = self.attention(
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            output_attentions=output_attentions,
        )
        hidden_states = self.dropout(hidden_states)
        hidden_states = attn_residual + hidden_states
        hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))

        outputs = (hidden_states, position_bias)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class WavLMWrapper(nn.Module, PyTorchModelHubMixin):

    def __init__(
        self, 
        pretrain_model="wavlm_large", 
        hidden_dim=256,
        freeze_params=True,
        output_class_num=4,
        use_conv_output=True,
        apply_reg=False
    ):
        super().__init__()
        self.pretrain_model = pretrain_model
        self.use_conv_output = use_conv_output
        
        # Load backbone
        if self.pretrain_model == "wavlm":
            self.backbone_model = WavLMModel.from_pretrained(
                "microsoft/wavlm-base-plus",
                output_hidden_states=True,
            )
        elif self.pretrain_model == "wavlm_large":
            self.processor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-large')
            self.backbone_model = WavLMModel.from_pretrained(
                "microsoft/wavlm-large",
                output_hidden_states=True,
            )
        
        # Keep original encoder layers (no LoRA)
        state_dict = self.backbone_model.state_dict()
        self.model_config = self.backbone_model.config
        if self.pretrain_model == "wavlm":
            self.backbone_model.encoder.layers = nn.ModuleList(
                [WavLMEncoderLayer(i, self.model_config, has_relative_position_bias=(i == 0)) 
                 for i in range(self.model_config.num_hidden_layers)]
            )
        else:
            self.backbone_model.encoder.layers = nn.ModuleList(
                [WavLMEncoderLayerStableLayerNorm(i, self.model_config, has_relative_position_bias=(i == 0)) 
                 for i in range(self.model_config.num_hidden_layers)]
            )
        self.backbone_model.load_state_dict(state_dict, strict=False)

        # Freeze weights if requested
        if freeze_params:
            for p in self.backbone_model.parameters():
                p.requires_grad = False

        # Conv projection layers
        self.model_seq = nn.Sequential(
            nn.Conv1d(self.model_config.hidden_size, hidden_dim, 1),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Conv1d(hidden_dim, hidden_dim, 1),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Conv1d(hidden_dim, hidden_dim, 1)
        )

        # Layer weights
        num_layers = self.model_config.num_hidden_layers + 1 if use_conv_output else self.model_config.num_hidden_layers
        self.weights = nn.Parameter(torch.ones(num_layers)/num_layers)

        # Output heads
        if apply_reg:
            self.age_dist_layer = nn.Sequential(
                nn.Linear(hidden_dim, hidden_dim),
                nn.ReLU(),
                nn.Linear(hidden_dim, 1),
                nn.Sigmoid()
            )
        else:
            self.age_dist_layer = nn.Sequential(
                nn.Linear(hidden_dim, hidden_dim),
                nn.ReLU(),
                nn.Linear(hidden_dim, 7)
            )

        self.sex_layer = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, 2)
        )

    def forward(self, x, length=None, return_feature=False, pred="age_dist_sex"):
        # Feature extraction
        if self.pretrain_model == "wavlm_large":  
            with torch.no_grad():
                signal, attention_mask = [], []
                if length is not None:
                    attention_mask = make_padding_masks(x, wav_len=length/length.max()).to(x.device)
                else:
                    attention_mask = make_padding_masks(x, wav_len=torch.tensor([1]).to(x.device)).to(x.device)

                for idx in range(len(x)):
                    input_vals = self.processor(x[idx], sampling_rate=16_000, return_tensors="pt", padding=True)
                    signal.append(input_vals["input_values"][0].to(x.device))
                signal = torch.stack(signal)

        if length is not None:
            length = self.get_feat_extract_output_lengths(length.detach().cpu()).cuda()

        if self.pretrain_model == "wavlm": 
            x = self.backbone_model(x, output_hidden_states=True).hidden_states
        else:
            x = self.backbone_model(signal, attention_mask=attention_mask, output_hidden_states=True).hidden_states

        # Weighted sum of layers
        stacked_feature = torch.stack(x, dim=0) if self.use_conv_output else torch.stack(x, dim=0)[1:]
        _, *origin_shape = stacked_feature.shape
        stacked_feature = stacked_feature.view(stacked_feature.shape[0], -1)
        norm_weights = F.softmax(self.weights, dim=-1)
        weighted_feature = (norm_weights.unsqueeze(-1) * stacked_feature).sum(dim=0)
        features = weighted_feature.view(*origin_shape)

        # Conv projection
        features = self.model_seq(features.transpose(1, 2)).transpose(1, 2)

        # Pooling
        if length is not None:
            mean = []
            for snt_id in range(features.shape[0]):
                actual_size = length[snt_id]
                mean.append(torch.mean(features[snt_id, 0:actual_size, ...], dim=0))
            features = torch.stack(mean)
        else:
            features = torch.mean(features, dim=1)

        # Predictions
        age_pred = self.age_dist_layer(features)
        sex_pred = self.sex_layer(features)

        if return_feature:
            return age_pred, sex_pred, features
        return age_pred, sex_pred

    # Huggingface conv output length helper
    def get_feat_extract_output_lengths(self, input_length):
        def _conv_out_length(input_length, kernel_size, stride):
            return (input_length - kernel_size) // stride + 1
        for kernel_size, stride in zip(self.backbone_model.config.conv_kernel, self.backbone_model.config.conv_stride):
            input_length = _conv_out_length(input_length, kernel_size, stride)
        return input_length

def age_gender(audio_waveform_np, model, device):
    #numpy2tensor
    if isinstance(audio_waveform_np, np.ndarray):
        tensor = torch.from_numpy(audio_waveform_np)
    elif isinstance(audio_waveform_np, torch.Tensor):
        tensor = audio_waveform_np

    if tensor.dim() == 1:
        tensor = tensor.unsqueeze(0)

    tensor = tensor.to(torch.device(device))

    if tensor.dtype not in (torch.float32, torch.float16):
        tensor = tensor.float()

    with torch.no_grad():
        wavlm_outputs, wavlm_sex_outputs = model(tensor)

    age_pred = wavlm_outputs.detach().cpu().numpy().flatten() * 100.0
    sex_prob = F.softmax(wavlm_sex_outputs, dim=1)
    sex_labels_es = ["Femenino", "Masculino"]
    sex_idx = int(torch.argmax(sex_prob).detach().cpu().item())
    sex_pred = sex_labels_es[sex_idx]

    try:
        age_value = int(round(float(age_pred[0])))  
        if age_value < 20:
            age_group = "joven (menor de 20)"
        elif age_value < 35:
            age_group = "adulto (20–35)"
        elif age_value < 60:
            age_group = "mediana edad (35–60)"
        else:
            age_group = "mayor (60+)"
    except Exception:
        age_value = None
        age_group = "desconocido"

    return str(age_value) if age_value is not None else "N/A", sex_pred, age_group