Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,510 Bytes
1619dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch import tensor
from transformers import Wav2Vec2FeatureExtractor, WavLMModel
import transformers.models.wavlm.modeling_wavlm as wavlm
from huggingface_hub import PyTorchModelHubMixin
from speechbrain.lobes.models.huggingface_transformers.huggingface import make_padding_masks
class RevGrad(Function):
@staticmethod
def forward(ctx, input_, alpha_):
ctx.save_for_backward(input_, alpha_)
return input_
@staticmethod
def backward(ctx, grad_output):
_, alpha_ = ctx.saved_tensors
grad_input = -grad_output * alpha_ if ctx.needs_input_grad[0] else None
return grad_input, None
revgrad = RevGrad.apply
class RevGradLayer(nn.Module):
def __init__(self, alpha=1.):
super().__init__()
self._alpha = tensor(alpha, requires_grad=False)
def forward(self, x):
return revgrad(x, self._alpha)
class WavLMEncoderLayer(nn.Module):
def __init__(self, layer_idx, config, has_relative_position_bias: bool = True):
super().__init__()
self.attention = wavlm.WavLMAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
num_buckets=config.num_buckets,
max_distance=config.max_bucket_distance,
has_relative_position_bias=has_relative_position_bias,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = wavlm.WavLMFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.config = config
def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, index=0):
attn_residual = hidden_states
hidden_states, attn_weights, position_bias = self.attention(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
index=index,
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states, position_bias)
if output_attentions:
outputs += (attn_weights,)
return outputs
class WavLMEncoderLayerStableLayerNorm(nn.Module):
def __init__(self, layer_idx, config, has_relative_position_bias: bool = True):
super().__init__()
self.attention = wavlm.WavLMAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
num_buckets=config.num_buckets,
max_distance=config.max_bucket_distance,
has_relative_position_bias=has_relative_position_bias,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = wavlm.WavLMFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.config = config
def forward(self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, position_bias = self.attention(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
outputs = (hidden_states, position_bias)
if output_attentions:
outputs += (attn_weights,)
return outputs
class WavLMWrapper(nn.Module, PyTorchModelHubMixin):
def __init__(
self,
pretrain_model="wavlm_large",
hidden_dim=256,
freeze_params=True,
output_class_num=4,
use_conv_output=True,
apply_reg=False
):
super().__init__()
self.pretrain_model = pretrain_model
self.use_conv_output = use_conv_output
# Load backbone
if self.pretrain_model == "wavlm":
self.backbone_model = WavLMModel.from_pretrained(
"microsoft/wavlm-base-plus",
output_hidden_states=True,
)
elif self.pretrain_model == "wavlm_large":
self.processor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-large')
self.backbone_model = WavLMModel.from_pretrained(
"microsoft/wavlm-large",
output_hidden_states=True,
)
# Keep original encoder layers (no LoRA)
state_dict = self.backbone_model.state_dict()
self.model_config = self.backbone_model.config
if self.pretrain_model == "wavlm":
self.backbone_model.encoder.layers = nn.ModuleList(
[WavLMEncoderLayer(i, self.model_config, has_relative_position_bias=(i == 0))
for i in range(self.model_config.num_hidden_layers)]
)
else:
self.backbone_model.encoder.layers = nn.ModuleList(
[WavLMEncoderLayerStableLayerNorm(i, self.model_config, has_relative_position_bias=(i == 0))
for i in range(self.model_config.num_hidden_layers)]
)
self.backbone_model.load_state_dict(state_dict, strict=False)
# Freeze weights if requested
if freeze_params:
for p in self.backbone_model.parameters():
p.requires_grad = False
# Conv projection layers
self.model_seq = nn.Sequential(
nn.Conv1d(self.model_config.hidden_size, hidden_dim, 1),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv1d(hidden_dim, hidden_dim, 1),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv1d(hidden_dim, hidden_dim, 1)
)
# Layer weights
num_layers = self.model_config.num_hidden_layers + 1 if use_conv_output else self.model_config.num_hidden_layers
self.weights = nn.Parameter(torch.ones(num_layers)/num_layers)
# Output heads
if apply_reg:
self.age_dist_layer = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1),
nn.Sigmoid()
)
else:
self.age_dist_layer = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 7)
)
self.sex_layer = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 2)
)
def forward(self, x, length=None, return_feature=False, pred="age_dist_sex"):
# Feature extraction
if self.pretrain_model == "wavlm_large":
with torch.no_grad():
signal, attention_mask = [], []
if length is not None:
attention_mask = make_padding_masks(x, wav_len=length/length.max()).to(x.device)
else:
attention_mask = make_padding_masks(x, wav_len=torch.tensor([1]).to(x.device)).to(x.device)
for idx in range(len(x)):
input_vals = self.processor(x[idx], sampling_rate=16_000, return_tensors="pt", padding=True)
signal.append(input_vals["input_values"][0].to(x.device))
signal = torch.stack(signal)
if length is not None:
length = self.get_feat_extract_output_lengths(length.detach().cpu()).cuda()
if self.pretrain_model == "wavlm":
x = self.backbone_model(x, output_hidden_states=True).hidden_states
else:
x = self.backbone_model(signal, attention_mask=attention_mask, output_hidden_states=True).hidden_states
# Weighted sum of layers
stacked_feature = torch.stack(x, dim=0) if self.use_conv_output else torch.stack(x, dim=0)[1:]
_, *origin_shape = stacked_feature.shape
stacked_feature = stacked_feature.view(stacked_feature.shape[0], -1)
norm_weights = F.softmax(self.weights, dim=-1)
weighted_feature = (norm_weights.unsqueeze(-1) * stacked_feature).sum(dim=0)
features = weighted_feature.view(*origin_shape)
# Conv projection
features = self.model_seq(features.transpose(1, 2)).transpose(1, 2)
# Pooling
if length is not None:
mean = []
for snt_id in range(features.shape[0]):
actual_size = length[snt_id]
mean.append(torch.mean(features[snt_id, 0:actual_size, ...], dim=0))
features = torch.stack(mean)
else:
features = torch.mean(features, dim=1)
# Predictions
age_pred = self.age_dist_layer(features)
sex_pred = self.sex_layer(features)
if return_feature:
return age_pred, sex_pred, features
return age_pred, sex_pred
# Huggingface conv output length helper
def get_feat_extract_output_lengths(self, input_length):
def _conv_out_length(input_length, kernel_size, stride):
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.backbone_model.config.conv_kernel, self.backbone_model.config.conv_stride):
input_length = _conv_out_length(input_length, kernel_size, stride)
return input_length
def age_gender(audio_waveform_np, model, device):
#numpy2tensor
if isinstance(audio_waveform_np, np.ndarray):
tensor = torch.from_numpy(audio_waveform_np)
elif isinstance(audio_waveform_np, torch.Tensor):
tensor = audio_waveform_np
if tensor.dim() == 1:
tensor = tensor.unsqueeze(0)
tensor = tensor.to(torch.device(device))
if tensor.dtype not in (torch.float32, torch.float16):
tensor = tensor.float()
with torch.no_grad():
wavlm_outputs, wavlm_sex_outputs = model(tensor)
age_pred = wavlm_outputs.detach().cpu().numpy().flatten() * 100.0
sex_prob = F.softmax(wavlm_sex_outputs, dim=1)
sex_labels_es = ["Femenino", "Masculino"]
sex_idx = int(torch.argmax(sex_prob).detach().cpu().item())
sex_pred = sex_labels_es[sex_idx]
try:
age_value = int(round(float(age_pred[0])))
if age_value < 20:
age_group = "joven (menor de 20)"
elif age_value < 35:
age_group = "adulto (20–35)"
elif age_value < 60:
age_group = "mediana edad (35–60)"
else:
age_group = "mayor (60+)"
except Exception:
age_value = None
age_group = "desconocido"
return str(age_value) if age_value is not None else "N/A", sex_pred, age_group
|